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INTRODUCTION

Sixteen of the seventeen hottest years ever recorded have occurred since 2001 and climate 
trends are predicted to continue in an upward trend.1 As this upward trend continues, it will 
serve as a severe environmental stress factor on all forms of the life.2,3 One of the most affected 
industries will be the livestock industry. Poultry, in particular, appears to be very heat sensi-
tive animals, due to lack of sweat glands and high metabolic activity.4,5 It is estimated that heat 
stress alone costs the U.S. poultry industry more than 100 million dollars a year and this num-
ber is expected to rise.6 For broiler (meat-type) chickens, the external temperature for optimal 
performance is 18 to 22 ºC.7 Under these conditions, the internal body temperature of a broiler 
is between 40.6 °C-41.7 °C. Nevertheless, when chickens are placed under heat stress condi-
tions, their body temperature may be well above that; up to 45 °C-47.2 °C, which is the lethal 
limit.8 Heat stress (HS) or hyperthermia results from failed thermoregulation that occurs when 
animals produce or absorbs more temperature than it dissipates.9 The adverse effects of HS can 
range from discomfort to multiple organ damage and, under severe stress, to death by spiraling 
hyperthermia. The Gut plays a vital role in nutrient absorption, digestion and transport, yet it is 
very responsive and susceptible to HS. In this editorial we will review the effect of heat stress 
on tight junction (TJ) proteins and gut health. 

HEAT STRESS AND GUT HEALTH

Under thermoneutral conditions, the gut is able to efficiently digest and absorb most nutri-
ents through cell plasma membranes (transcellular transport) that involves specific receptors. 
Epithelial cells in the intestine provides a barrier isolating the external environment from the 
internal body, yet, providing tolerance to water and digested nutrients.10-12 Intestinal epithe-
lial cells adhere to each other through three distinct intercellular junctional complex known 
as desmosomes, adheren junctions (AJ), and TJ (Figure 1). Desmosomes are localized dense 
plaques that are connected to keratin filaments while AJ and TJ both consist of transcellular 
proteins.13,14 These proteins are connected intracellularly through adaptor proteins to the actin 
cytoskeleton.3,15 In contrast to transcellular transport, the transfer of molecules through the 
space between the cells across an epithelium (paracellular transport) is passive down a con-
centration gradient, and this transport is regulated by the TJ.16 As multi-protein complexes, TJ 
not only hold cells together, but they form channels allowing the transport of substances across 
the epithelium.17 Interestingly, the molecular composition, ultrastructure, and function of TJ 
is regulated by intracellular proteins through a series of intracellular signaling pathways that 
includes myosin light kinase (MLCK), mitogen-activated protein kinases (MAPK), protein 
kinase C (PKC) among others.18 Occludin phosphorylation on Tyr, Ser and Thr is associated 
with disruption of TJ, hence, phosphorylation of occludin is involved in TJ permeability.19 Any 
factors that affect the balance between protein kinases and protein phosphatases, such as heat 
stress or inflammation can affect gut permeability due to disruption of TJ.20,21 In contrast, gly-
cosylation of the Junctional adhesion molecule-A (JAM-A) decreases gut permeability.22,23 TJ 
regulate epithelial permeability and paracellular diffusion via two pathways, leak and pore.24 
The leak pathway allows transport of large noncharged solutes while the pore pathway allows 
the transfer of large charged molecules.25 As transmembrane barrier proteins, TJ also function 
as a fence between the lumen and host.26 There are roughly 50 TJ proteins, which include the 

http://dx.doi.org/10.17140/AFTNSOJ-3-e010


Open Journal

http://dx.doi.org/10.17140/AFTNSOJ-3-e010

ADVANCES IN FOOD TECHNOLOGY  
AND NUTRITIONAL SCIENCES

ISSN 2377-8350

Adv Food Technol Nutr Sci Open J Page e2

claudins, occludin, tricellulin, JAM’s, and scaffolding proteins. For instance, tricellulin (also known as MARVELD2) and angulin 
family proteins, including angulin-1 (also known as LSR), angulin-2 (also known as ILDR1) and angulin-3 (also known as ILDR2), 
have been identified as molecular constituents of tricellular contacts. Both types of proteins are involved in TJ formation as well 
as the full barrier function of epithelial cellular sheets. The primary role of scaffolding proteins is to regulate stand formation and 
placement of transmembrane proteins.4,27 Under thermal neutral conditions, paracellular junction are rigorously regulated.14 How-
ever, under heat stress conditions, the TJ barrier becomes compromised and luminal substances leak into the blood stream, hence 
the term leaky gut,28 a condition that induce chronic systemic inflammation which requires high resources of energy that impact 
negatively the performance of the animals. Alterations in gut permeability are associated with bacterial translocation (BT) in the 
portal and/or systemic circulation in several types of leaky gut syndromes leading to systemic bacterial infections.29 Similarly, FITC-
dextrin is a large molecule (3-5 kDa) which does not usually leak through the intact gastrointestinal tract barrier.4,6 However, when 
there are conditions which disrupt the tight junctions between epithelial cells, the molecule can enter circulation demonstrated by 
an increase in trans-mucosal permeability associated with chemically induced disruption of tight junctions by elevated serum levels 
of FITC-d after oral administration.30,31 Although studies are very limited, it has been reported that cyclic heat stress up regulated 
claudin and ZO-1 expression in the chicken jejunum.32 This indicates that heat stress dysregulates intestinal barrier function and 
induces leaky gut via alteration of tight junction proteins which merit further in depth investigations.
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