Research Article
BibTex RIS Cite
Year 2022, Volume: 26 Issue: 5, 956 - 966, 20.10.2022
https://doi.org/10.16984/saufenbilder.1074637

Abstract

References

  • [1] S. Benjamin, A. Pandey, “Candida rugosa Lipases: Molecular Biology and Versatility In Biotechnology,” Yeast, vol. 14, pp. 1069–1087, 1998.
  • [2] R. D. Schmid, R. Verger, “Lipases: Interfacial Enzymes with Attractive Applications,” Angewandte Chemie-International Edition, vol. 37, pp. 1608-1633, 1998. [3] A. Svendsen, P. Woolley, S. B. Petersen, “Lipases—Their Structure, Biochemistry and Applications.” Cambridge University Press, Cambridge, pp. 1–21, 1994.
  • [4] U. T. Bornscheuer, R. J. Kazlauskas, “Hydrolayses In Organic Synthesis Regio and Stereoselective Biotransformations,” Wiley Vch, Weinheim, pp. 105, 1999.
  • [5] P. K. Ghosh, R. K. Saxena, R. Gupta, R. P. Yadav, S. Davidson, “Microbial Lipases Production and Applications” Science Progress, vol. 79, no. 2, pp. 119-157, 1996.
  • [6] E. W. Seitz, “Industrial Applications of Microbial Lipases-A Review,” Journal of American Oil Chemists Society, vol. 51,pp. 12–16, 1974.
  • [7] S. Ito, T. Kobayashi, K. Ara, K. Ozaki, S. Kawai, Y. Hatada, “Detergent Enzymes From Alkaliphiles: Enzymatic Properties, Genetics and Structures,” Extremophiles vol. 2, pp. 90-185, 1998.
  • [8] K. İnan, “İzmir ve Aydın illerindeki bazı kaplıcalardan izole edilen termofilik bakteri izolatlarının moleküler taksonomisi ve D1021 izolatının glukoz izomerazının karakterizasyonu, Doktora Tezi,” 2011.
  • [9] M M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,” Analytical Biochemistry vol. 72, pp. 248–254, 1976.
  • [10] T. Maniatis, E. F. Fritsch, J. Sambrook, “Molecular Cloning: a Laboratory Manual,” Cold Spring Har, 1982.
  • [11] D. Lee, Y. Koh, K. Kim, B. Kim, H. Choi, D. Kim, M.T. Suhartono, Y. Pyun, “Isolation and characterization of a thermophilic lipase from bacillus thermoleovorans ID-1” FEMS Microbiology Letters, vol. 179, pp. 393-400, 1999. [12] D. M. Charbonneau, F. Meddeb-Mouelhi, and M. Beauregard, “A novel thermostable carboxylesterase from Geobacillus thermodenitrificans: evidence for a new carboxylesterase family,” The Journal of Biochemistry, vol. 148, pp. 299–308, 2010.
  • [13] E. Özbek, Y. Kolcuoğlu, L. Konak, A. Çolak, F. ÖZ, “Partial purification and biochemical characterization of an extremely thermo-and pH-stable esterase with great substrate affinity,” Turhish Journal of Chemistary, vol. 38, pp. 538-546, 2014.
  • [14] H. C. Tekedar, G. Şanlı-Mohamed, “Molecular cloning, over expression and characterization of thermoalkalophilic esterases isolated from Geobacillus sp.” Extremophiles, vol. 15, pp. 203–211, 2011.
  • [15] N. A. Soliman, M. Knoll, Y. R. Abdel-Fattah, R. D. Schmid, S. Lange, “Molecular cloning and characterization of thermostable esterase and lipase from Geobacillus thermoleovorans YN isolated from desert soil in Egypt,” Process Biochemistry, vol. 42, pp. 1090-1100, 2007.
  • [16] W. Li, H. Shi, H. Ding, L. Wang, Y. Zhang, X. Li, F. Wang, “Charcterization of two thermostable esterases from Thermoanaerobacterium thermosaccharolyticum,” Protein Expression and Purification, vol. 152, pp. 64-70, 2018.
  • [17] M. A. Tekincanli, M. Y. Akatin, A. ÇOLAK, “Purification and characterization of anovel thermostable esterase from Thermus sp. NCCB 100425T,” Turkish Journal of Biochemistry, vol. 40, no. 2, pp. 116-124, 2015.
  • [18] S. Yang, Z. Qin, X. Duan, Q. Yan, Z. Jiang, “Structural insights into the substrate specifi city of two esterases from the thermophilic Rhizomucor miehei,” Journal of Lipid Research, vol. 56, 2015.
  • [19] Z. B. Bakır Ateşlier, K. Metin, “Production and Partial Characterization of A Novel Thermostable Esterase From A Thermophilic Bacillus sp.,” Enzyme and Microbial Technology, vol. 38, pp. 628–635, 2006.
  • [20] F. Ay, H. Karaoglu, K Inan, S. Canakci, A. O. Belduz, “Cloning, purification and characterization of a thermostable carboxylesterase from Anoxybacillus sp. PDF1,” Protein Expression and Purification vol. 80, pp. 74–79, 2011.
  • [21] P. Fojan, P. H Jonson, M. T. Petersen, S. B. Petersen, “What Distinguishes an Esterase From A Lipase: A novel Structural Approach,” Biochimie., vol. 82, pp. 1033-1041, 2000.
  • [22] H. E. Ewis, A. T. Abdelal, C.-D. Lu, “Molecular cloning and characterization of two thermostable carboxyl esterases from Geobacillus stearothermophilus,” Gene, vol. 329, pp. 187-195, 2004.
  • [23] J. de Cassia Pereira, E. C. Giese, M.. M. de Souza Moretti, A. C. dos Santos Gomes, O. M. Perrone, M. Boscolo, R. da Silva, E. Gomes and D. A. B. Martins, “Effect of Metal Ions, Chemical Agents and Organic Compounds on Lignocellulolytic Enzymes Activities,”Enzyme Inhibitors and Activators (Ed. M. Senturk), Chapter 6, 2017.
  • [24] P D. Fullbrook, “Practical Applied Kinetics. In: Godfrey T, West S (eds) Industrial enzymology. 2nd edition” Stockholm Press, New York, pp 483–540, 1996.
  • [25] A. Kademi, N. A¨ıt-Abdelkader, L. Fakhreddine, J. C. Baratti, “Characterization of A New Thermostable Esterase From The Moderate Thermophilic Bacterium Bacillus circulans,” Journal of Molecular Catalysis B: Enzymatic, Vol.10, no. 4, pp. 395–401, 2000.

Characterization of a New Thermostable Carboxylesterase from Aneurinibacillus sp. PDF24

Year 2022, Volume: 26 Issue: 5, 956 - 966, 20.10.2022
https://doi.org/10.16984/saufenbilder.1074637

Abstract

In this study, esterase of Aneurinibacillus sp. PDF24 strain, a thermophilic bacteria, was purified to homogenity (5.25 fold purification) by column chromotography, and characterized. The molecular weight of Aneurinibacillus sp. PDF24 esterase was determined about 40 kDa. The maximum activity of the purified esterase was analyzed at 55°C, pH 8.5. The esterase was found to be stable at 40ºC, 50ºC and 60ºC for 1 hour. Km and Vmax values for p-nitrophenyl butyrate were determined as 0.120 mM and 3164.8 U/mg, respectively. Considering Km values in the literature, Aneurinibacillus sp. PDF24 esterase was found to have a good Km value compared to other esterases. In the presence of 1 mM and 5 mM metal salts of Mg2+, Li+, Ca2+, K+, no significant change occured in enzyme activity. The activity of Aneurinibacillus sp PDF24 esterase was found to be stable also in the presence of ethanol, DMSO, EDTA, DTT and ß-mercaptoethanol. The data obtained suggest that the enzyme is a serine esterase, not a metalloprotein, and that disulfide bonds are not required to maintain enzyme conformation, and therefore, depending on its features, this esterase may be a suitable candidate for industrial applications.

References

  • [1] S. Benjamin, A. Pandey, “Candida rugosa Lipases: Molecular Biology and Versatility In Biotechnology,” Yeast, vol. 14, pp. 1069–1087, 1998.
  • [2] R. D. Schmid, R. Verger, “Lipases: Interfacial Enzymes with Attractive Applications,” Angewandte Chemie-International Edition, vol. 37, pp. 1608-1633, 1998. [3] A. Svendsen, P. Woolley, S. B. Petersen, “Lipases—Their Structure, Biochemistry and Applications.” Cambridge University Press, Cambridge, pp. 1–21, 1994.
  • [4] U. T. Bornscheuer, R. J. Kazlauskas, “Hydrolayses In Organic Synthesis Regio and Stereoselective Biotransformations,” Wiley Vch, Weinheim, pp. 105, 1999.
  • [5] P. K. Ghosh, R. K. Saxena, R. Gupta, R. P. Yadav, S. Davidson, “Microbial Lipases Production and Applications” Science Progress, vol. 79, no. 2, pp. 119-157, 1996.
  • [6] E. W. Seitz, “Industrial Applications of Microbial Lipases-A Review,” Journal of American Oil Chemists Society, vol. 51,pp. 12–16, 1974.
  • [7] S. Ito, T. Kobayashi, K. Ara, K. Ozaki, S. Kawai, Y. Hatada, “Detergent Enzymes From Alkaliphiles: Enzymatic Properties, Genetics and Structures,” Extremophiles vol. 2, pp. 90-185, 1998.
  • [8] K. İnan, “İzmir ve Aydın illerindeki bazı kaplıcalardan izole edilen termofilik bakteri izolatlarının moleküler taksonomisi ve D1021 izolatının glukoz izomerazının karakterizasyonu, Doktora Tezi,” 2011.
  • [9] M M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,” Analytical Biochemistry vol. 72, pp. 248–254, 1976.
  • [10] T. Maniatis, E. F. Fritsch, J. Sambrook, “Molecular Cloning: a Laboratory Manual,” Cold Spring Har, 1982.
  • [11] D. Lee, Y. Koh, K. Kim, B. Kim, H. Choi, D. Kim, M.T. Suhartono, Y. Pyun, “Isolation and characterization of a thermophilic lipase from bacillus thermoleovorans ID-1” FEMS Microbiology Letters, vol. 179, pp. 393-400, 1999. [12] D. M. Charbonneau, F. Meddeb-Mouelhi, and M. Beauregard, “A novel thermostable carboxylesterase from Geobacillus thermodenitrificans: evidence for a new carboxylesterase family,” The Journal of Biochemistry, vol. 148, pp. 299–308, 2010.
  • [13] E. Özbek, Y. Kolcuoğlu, L. Konak, A. Çolak, F. ÖZ, “Partial purification and biochemical characterization of an extremely thermo-and pH-stable esterase with great substrate affinity,” Turhish Journal of Chemistary, vol. 38, pp. 538-546, 2014.
  • [14] H. C. Tekedar, G. Şanlı-Mohamed, “Molecular cloning, over expression and characterization of thermoalkalophilic esterases isolated from Geobacillus sp.” Extremophiles, vol. 15, pp. 203–211, 2011.
  • [15] N. A. Soliman, M. Knoll, Y. R. Abdel-Fattah, R. D. Schmid, S. Lange, “Molecular cloning and characterization of thermostable esterase and lipase from Geobacillus thermoleovorans YN isolated from desert soil in Egypt,” Process Biochemistry, vol. 42, pp. 1090-1100, 2007.
  • [16] W. Li, H. Shi, H. Ding, L. Wang, Y. Zhang, X. Li, F. Wang, “Charcterization of two thermostable esterases from Thermoanaerobacterium thermosaccharolyticum,” Protein Expression and Purification, vol. 152, pp. 64-70, 2018.
  • [17] M. A. Tekincanli, M. Y. Akatin, A. ÇOLAK, “Purification and characterization of anovel thermostable esterase from Thermus sp. NCCB 100425T,” Turkish Journal of Biochemistry, vol. 40, no. 2, pp. 116-124, 2015.
  • [18] S. Yang, Z. Qin, X. Duan, Q. Yan, Z. Jiang, “Structural insights into the substrate specifi city of two esterases from the thermophilic Rhizomucor miehei,” Journal of Lipid Research, vol. 56, 2015.
  • [19] Z. B. Bakır Ateşlier, K. Metin, “Production and Partial Characterization of A Novel Thermostable Esterase From A Thermophilic Bacillus sp.,” Enzyme and Microbial Technology, vol. 38, pp. 628–635, 2006.
  • [20] F. Ay, H. Karaoglu, K Inan, S. Canakci, A. O. Belduz, “Cloning, purification and characterization of a thermostable carboxylesterase from Anoxybacillus sp. PDF1,” Protein Expression and Purification vol. 80, pp. 74–79, 2011.
  • [21] P. Fojan, P. H Jonson, M. T. Petersen, S. B. Petersen, “What Distinguishes an Esterase From A Lipase: A novel Structural Approach,” Biochimie., vol. 82, pp. 1033-1041, 2000.
  • [22] H. E. Ewis, A. T. Abdelal, C.-D. Lu, “Molecular cloning and characterization of two thermostable carboxyl esterases from Geobacillus stearothermophilus,” Gene, vol. 329, pp. 187-195, 2004.
  • [23] J. de Cassia Pereira, E. C. Giese, M.. M. de Souza Moretti, A. C. dos Santos Gomes, O. M. Perrone, M. Boscolo, R. da Silva, E. Gomes and D. A. B. Martins, “Effect of Metal Ions, Chemical Agents and Organic Compounds on Lignocellulolytic Enzymes Activities,”Enzyme Inhibitors and Activators (Ed. M. Senturk), Chapter 6, 2017.
  • [24] P D. Fullbrook, “Practical Applied Kinetics. In: Godfrey T, West S (eds) Industrial enzymology. 2nd edition” Stockholm Press, New York, pp 483–540, 1996.
  • [25] A. Kademi, N. A¨ıt-Abdelkader, L. Fakhreddine, J. C. Baratti, “Characterization of A New Thermostable Esterase From The Moderate Thermophilic Bacterium Bacillus circulans,” Journal of Molecular Catalysis B: Enzymatic, Vol.10, no. 4, pp. 395–401, 2000.
There are 23 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Articles
Authors

Meral Belduz Kolcu This is me 0000-0002-9760-4817

Fulya Ay Sal 0000-0002-0216-336X

Ali Beldüz 0000-0003-2240-7568

Sabriye Çanakçı 0000-0003-0132-7198

Publication Date October 20, 2022
Submission Date February 16, 2022
Acceptance Date August 16, 2022
Published in Issue Year 2022 Volume: 26 Issue: 5

Cite

APA Belduz Kolcu, M., Ay Sal, F., Beldüz, A., Çanakçı, S. (2022). Characterization of a New Thermostable Carboxylesterase from Aneurinibacillus sp. PDF24. Sakarya University Journal of Science, 26(5), 956-966. https://doi.org/10.16984/saufenbilder.1074637
AMA Belduz Kolcu M, Ay Sal F, Beldüz A, Çanakçı S. Characterization of a New Thermostable Carboxylesterase from Aneurinibacillus sp. PDF24. SAUJS. October 2022;26(5):956-966. doi:10.16984/saufenbilder.1074637
Chicago Belduz Kolcu, Meral, Fulya Ay Sal, Ali Beldüz, and Sabriye Çanakçı. “Characterization of a New Thermostable Carboxylesterase from Aneurinibacillus Sp. PDF24”. Sakarya University Journal of Science 26, no. 5 (October 2022): 956-66. https://doi.org/10.16984/saufenbilder.1074637.
EndNote Belduz Kolcu M, Ay Sal F, Beldüz A, Çanakçı S (October 1, 2022) Characterization of a New Thermostable Carboxylesterase from Aneurinibacillus sp. PDF24. Sakarya University Journal of Science 26 5 956–966.
IEEE M. Belduz Kolcu, F. Ay Sal, A. Beldüz, and S. Çanakçı, “Characterization of a New Thermostable Carboxylesterase from Aneurinibacillus sp. PDF24”, SAUJS, vol. 26, no. 5, pp. 956–966, 2022, doi: 10.16984/saufenbilder.1074637.
ISNAD Belduz Kolcu, Meral et al. “Characterization of a New Thermostable Carboxylesterase from Aneurinibacillus Sp. PDF24”. Sakarya University Journal of Science 26/5 (October 2022), 956-966. https://doi.org/10.16984/saufenbilder.1074637.
JAMA Belduz Kolcu M, Ay Sal F, Beldüz A, Çanakçı S. Characterization of a New Thermostable Carboxylesterase from Aneurinibacillus sp. PDF24. SAUJS. 2022;26:956–966.
MLA Belduz Kolcu, Meral et al. “Characterization of a New Thermostable Carboxylesterase from Aneurinibacillus Sp. PDF24”. Sakarya University Journal of Science, vol. 26, no. 5, 2022, pp. 956-6, doi:10.16984/saufenbilder.1074637.
Vancouver Belduz Kolcu M, Ay Sal F, Beldüz A, Çanakçı S. Characterization of a New Thermostable Carboxylesterase from Aneurinibacillus sp. PDF24. SAUJS. 2022;26(5):956-6.