Archives of Histology and Cytology
Online ISSN : 1349-1717
Print ISSN : 0914-9465
ISSN-L : 0914-9465
Original articles
The Induction of Autophagic Vacuoles and the Unique Endocytic Compartments, C-Shaped Multivesicular Bodies, in GH4C1 Cells after Treatment with 17β-Estradiol, Insulin and EGF
Satoshi WAGURIMari KOHMURATakahiro GOTOWTsuyoshi WATANABEYoshiyuki OHSAWAEiki KOMlNAMIYasuo UCHIYAMA
Author information
JOURNAL FREE ACCESS

1999 Volume 62 Issue 5 Pages 423-434

Details
Abstract

The mechanisms for the formation of autophagic vacuoles were investigated using GH4C1 cells, a rat pituitary tumor cell line, whose induction increases intracellular levels of lysosomal proteinases and their mRNA by treatment with a combination of hormones (17β-estradiol, insulin and EGF). By ordinary electron microscopy, autophagic vacuoles containing various undigested structures with or without limiting membranes were abundant in the hormone-induced cells. These vacuoles, also containing numerous small vesicles, appeared to be derived from multivesicular bodies. In fact, there were also numerous C-shaped multivesicular bodies which enclosed cytoplasmic portions, suggesting that these unique structures are involved in the production of the autophagic vacuoles. Moreover, the cytoplasmic portions enlapped by the C-shaped multivesicular bodies were high in electron density and contained filamentous structures. By the cryothin-section immunogold method, the C-shaped multivesicular bodies in some cases contained lysosomal marker proteins such as cathepsins B and H, and lgp 120. Using an anti-actin monoclonal antibody, immunogold particles clearly labeled the cytoplasmic portions enclosed by the C-shaped multivesicular bodies. Pulse-chase experiments with horse radish peroxidase, a fluid-phase endocytic marker, revealed that the incidence of the C-shaped multivesicular bodies labeled with horse radish peroxidase peaked at 30 min after the beginning of chase incubation, whereas no C-shaped multivesicular body with horse radish peroxidase was detected in the cells by cytochalasin D treatment. These results suggest that the C-shaped multivesicular bodies occur in a transitional process from endosomes to lysosomes by the action of actin filaments, and that this morphological change may be essential for the production of autophagic vacuoles in the hormone-induced GH4C1 cells.

Content from these authors
© 1999 by International Society of Histology and Cytology
Previous article Next article
feedback
Top