Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T13:37:46.824Z Has data issue: false hasContentIssue false

Odonatan endophytic oviposition from the Eocene of Patagonia: The ichnogenus Paleoovoidus and implications for behavioral stasis

Published online by Cambridge University Press:  14 July 2015

Laura C. Sarzetti
Affiliation:
1CONICET, Museo Paleontologico Egidio Feruglio, Avenida Fontana 140, Trelew, Chubut 9100, Argentina, , and
Conrad C. Labandeira
Affiliation:
2Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 20213-7012 3Department of Entomology, University of Maryland, College Park, Maryland 20742,
Javier Muzón
Affiliation:
4Instituto de Limnologia “Dr. Raul A. Ringuelet,” Av. Calchaqui Km 23,5 712, Florencio Varela, Buenos Aires, Argentina, 1888,
Peter Wilf
Affiliation:
5Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania, 16802,
N. Rubén Cúneo
Affiliation:
1CONICET, Museo Paleontologico Egidio Feruglio, Avenida Fontana 140, Trelew, Chubut 9100, Argentina, , and
Kirk R. Johnson
Affiliation:
6Department of Earth Sciences, Denver Museum of Nature and Science, Denver, Colorado 80205,
Jorge F. Genise
Affiliation:
1CONICET, Museo Paleontologico Egidio Feruglio, Avenida Fontana 140, Trelew, Chubut 9100, Argentina, , and

Abstract

We document evidence of endophytic oviposition on fossil compression/impression leaves from the early Eocene Laguna del Hunco and middle Eocene Rio Pichileufu floras of Patagonia, Argentina. Based on distinctive morphologies and damage patterns of elongate, ovoid, lens-, or teardrop-shaped scars in the leaves, we assign this insect damage to the ichnogenus Paleoovoidus, consisting of an existing ichnospecies, P. rectus, and two new ichnospecies, P. arcuatum and P. bifurcatus. In P. rectus, the scars are characteristically arranged in linear rows along the midvein; in P. bifurcatus, scars are distributed in double rows along the midvein and parallel to secondary veins; and in P. arcuatum, scars are deployed in rectilinear and arcuate rows. In some cases, the narrow, angulate end of individual scars bear a darkened region encompassing a circular hole or similar feature indicating ovipositor tissue penetration. A comparison to the structure and surface pattern of modern ovipositional damage on dicotyledonous leaves suggests considerable similarity to certain zygopteran Odonata. Specifically, members of the Lestidae probably produced P. rectus and P. bifurcatus, whereas species of Coenagrionidae were responsible for P. arcuatum. Both Patagonian localities represent an elevated diversity of potential fern, gymnosperm, and especially angiosperm hosts, the targets of all observed oviposition. However, we did not detect targeting of particular plant families. Our results indicate behavioral stasis for the three ovipositional patterns for at least 50 million years. Nevertheless, synonymy of these oviposition patterns with mid-Mesozoic ichnospecies indicates older origins for these distinctive modes of oviposition.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adami-Rodrigues, K., Iannuzzi, R., and Pinto, I. D. 2004. Permian plant-insect interactions from a Gondwana flora of southern Brazil. Fossils and Strata, 51:106125.CrossRefGoogle Scholar
Ando, H. 1962. The Comparative Embryology of Odonata with Special Reference to a Relic Dragonfly Epiophlebia superstes Selys. Japanese Society for the Promotion of Science, Tokyo, 205 p.Google Scholar
Aragón, E. and Mazzoni, M. M. 1997. Geología y estratigrafía del complejo volcánico piroclástico del Río Chubut medio (Eoceno), Chubut, Argentina. Revista de la Asociación Geológica Argentina, 52:243256.Google Scholar
Aragón, E. and Romero, E. 1984. Geología, paleoambientes y paleobotánica de yacimientos Terciarios del occidente, Río Negro y Chubut. Actas del Noveno Congreso Geológico Argentino, 4:474507.Google Scholar
Aragón, E., Aguilera, Y. D., González, P. D., Gómez Peral, L., Cavarozzi, C. E., and Ribot, A. 2001. El Intrusivo Florentina del complejo volcánico piroclástico del Río Chubut medio (Paleocene-Eoceno medio): Un ejemplo de etmolito o embudo. Revista de la Asociación Geológica Argentina, 56:161172.Google Scholar
Báez, A. M. and Trueb, L. 1997. Redescription of the Paleogene Shelania pascuali from Patagonia and its bearing on the relationships of the fossil Recent pipoid frogs. Scientific Papers, Natural History Museum, University of Kansas, 4:141.Google Scholar
Banerji, J. 2004. Evidence of insect-plant interactions from the Upper Gondwana Sequence (Lower Cretaceous) in Rajmahal Basin, India. Gondwana Research, 7:205210.CrossRefGoogle Scholar
Beattie, R. 2007. The geological setting and palaeoenvironment and palaeoecological reconstructions of the Upper Permian insect beds at Belmont, New South Wales, Australia. African Invertebrates, 48:4157.Google Scholar
Bechly, G. 1996. Morphologische Untersuchungen am Flügelgeäder der rezenten libellen und deren Stammgruppenvertreter (Insecta: Pterygota: Odonata). Unpublished Ph.D. dissertation. Eberhard-Karls-Universität Tübingen, 402 p.Google Scholar
Berry, E. W. 1925. A Miocene flora from Patagonia. Johns Hopkins University Studies in Geology, 6:183234.Google Scholar
Berry, E. W. 1928. Tertiary fossil plants from the Argentine Republic. Proceedings of the United States National Museum, 73:127.Google Scholar
Berry, E. W. 1935a. A fossil Cochlospermum from northern Patagonia. Bulletin of the Torrey Botanical Club, 62:6567.CrossRefGoogle Scholar
Berry, E. W. 1935b. A Tertiary Ginkgo from Patagonia. Torreya, 35:1113.Google Scholar
Berry, E. W. 1935c. The Monimiaceae and a new Laurelia. Botanical Gazette, 96:751754.CrossRefGoogle Scholar
Berry, E. W. 1938. Tertiary flora from the Río Pichileufú, Argentina. Geological Society of America Special Paper, 12:1149.CrossRefGoogle Scholar
Béthoux, O., Galtier, J., and Nel, A. 2004. Earliest evidence of insect endophytic oviposition. Palaios, 19:408413.2.0.CO;2>CrossRefGoogle Scholar
Bick, G. H. and Hornuff, L. E. 1965. Behavior of the damselfly, Lestes unguiculatus Hagen (Odonata: Lestidae). Proceedings of the Indiana Academy of Sciences, 75:110115.Google Scholar
Bunbury, C. J. F. 1861, Notes on a collection of fossil plants from Nágpur, central India. Proceedings of the Geological Society of London, 17:327346.Google Scholar
Calvert, P. P. 1909. Contribution to knowledge of the Odonata of the Neotropical Region, exclusive of Mexico and Central America. Annals of the Carnegie Museum, 6:73280.CrossRefGoogle Scholar
Carpenter, F. M. 1960. A Triassic odonate from Argentina. Psyche, 67:7175.CrossRefGoogle Scholar
Carpenter, F. M. 1971. Adaptations among Paleozoic insects, p. 12361251. In Yochelson, E. L. (ed.), Proceedings of the First North American Paleontological Convention, Lawrence, Kansas, Allen Press, 2.Google Scholar
Casamiquela, R. M. 1961. Un pipoideo fósil de Patagonia. Revista del Museo de La Plata, Sección Paleontología, 4:71123.Google Scholar
Corbet, P. S. 1963. A Biology of Dragonflies. Quadrangle Books, Chicago, 247 p.Google Scholar
Corbet, P. S. 1999. Dragonflies: Behaviour and Ecology of Odonata. Colchester, Harley Books, U.K., 829 p.Google Scholar
Frenguelli, J. 1943a. Proteaceas del Cenozoico de Patagonia. Notas del Museo de La Plata, 8:201213.Google Scholar
Frenguelli, J. 1943b. Restos de Casuarina en el Mioceno de El Mirador, Patagonia central. Notas del Museo de La Plata, 8:349354.Google Scholar
Gandolfo, M. A., Dibbern, M. C., and Romero, E. J. 1988. Akania patagonica n. sp. and additional material on Akania americana Romero and Hickey (Akaniaceae), from Paleocene sediments of Patagonia. Bulletin of the Torrey Botanical Club, 115:8388.CrossRefGoogle Scholar
Gandolfo, M. A., González, C. C., Zamaloa, M. C., Cúneo, R. N., and Wilf, P. 2006. Eucalyptus (Myrtaceae) macrofossils from the early Eocene of Patagonia, Argentina. Abstract Botanical Society of America Annual Meeting, Chico, California, p. 473.Google Scholar
Genise, J. F. and Petrulevicius, J. F. 2001. Caddisfly cases from the early Eocene of Chubut, Patagonia, Argentina. Second International Congress on Paleoentomology, Kraków, Poland, Abstracts, p. 1213.Google Scholar
Givulescu, R. 1984. Pathological elements on fossil leaves from Chiuzabaia (galls, mines, and other insect traces). Dāri de Seamā ale Şedintelor, Intitutul de Geologie şi Geofízicā, 68:123133.Google Scholar
Gnaedinger, S., Adami Rodrigues, K., and Gallego, O. F. 2007. Evidencias de trazas de oviposición de insectos (Odonata) en hojas del Triásico Superior de Chile. Reunión Anual de Comunicaciones de la Asociación Paleontológica Argentina. Abstracts, p. 29.Google Scholar
González, C. C., Gandolfo, M. A., Zamaloa, M. C., Cúneo, N. R., Wilf, P., and Johnson, K. R. 2007. Revision of the Proteaceae macrofossil record from Patagonia, Argentina. Botanical Review, 73:235266.CrossRefGoogle Scholar
Gower, J. L. and Kormondy, E. J. 1963. Life history of damselfly Lestes rectangularis with special reference to seasonal regulation. Ecology, 44:398402.CrossRefGoogle Scholar
Grauvogel-Stamm, L. and Kelber, K. P. 1996. Plant insect interaction and coevolution during the Triassic in western Europe. Paleontologica Lombarda (N.S.), 5:523.Google Scholar
Grunert, H. 1995. Eiablageverhalten und Substratnutzung von Erythromma najas (Odonata: Coenagrionidae). Braunschweiger Naturkundliche Schriften, 4:769794.Google Scholar
Gutiérrez, P. R., Muzón, J., and Limarino, C. O. 2000. The earliest Late Carboniferous winged insect (Insecta, Protodonata) from Argentina: Geographical and stratigraphical location. Ameghiniana, 37:375378.Google Scholar
Hellmund, M. and Hellmund, W. 1991. Eiblageverhalten fossiler Kleinli-beller (Odonata: Zygoptera) aus dem Oberoligozän von Rott im Siebengebirge. Stuttgarter Beiträge zur Naturkunde (B), 177:117.Google Scholar
Hellmund, M. and Hellmund, W., 1993. Neufunde fossiler Kleinlibellen (Odonata, Zygoptera) aus dem Oberoligozän von Rott im Siebengebirge. Decheniana, 146:348351.Google Scholar
Hellmund, M. and Hellmund, W. 1996a. Zur endophytischen eiablage fossiler Kleinlibellen (Insecta, Odonata, Zygoptera), mit Beschreibung neuen Gelegetyps. Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Historische Geologie, 36:107115.Google Scholar
Hellmund, M. and Hellmund, W. 1996b. Fossile Zeugnisse zum Verhalten von Kleinlibellen aus Rott, p. 5760. In Koenigswald, W. (ed.), Fossillagerstätte Rott bei Hennef im Siebengebirge. Bonn, Rheinlandia Verlag.Google Scholar
Hellmund, M. and Hellmund, W. 1996c. Zum Fortpflanzungsmodus fossiler Kleinlibellen (Insecta, Odonata, Zygoptera). Paläontologische Zeitschrift, 70:153170.CrossRefGoogle Scholar
Hellmund, M. and Hellmund, W. 1998. Eilogen von Zygopteren (Insecta, Odonata, Coenagrionidae) in unteroligozänen Maarsedimenten von Hammerunterwiesenthal (Freistaat Sachsen). Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden, 43/44:281292.Google Scholar
Hellmund, M. and Hellmund, W. 2002a. Eigelege fossiler Zygopteren auf dikotylenblättern aus dem mitterlmiozän von Salzhausen (Vogelsberg, Hessen, Deutschland). Odonatologica, 31:253272.Google Scholar
Hellmund, M. and Hellmund, W. 2002b. Erster nachweis von Kleinlibellen-eilogen (Insecta, Zygoptera, Lestidae) in der mitteleozänen braunkohle des ehemaligen tagebaues Mücheln, baufeld neumark-nord (Geiseltal, Sachsen-Anhalt, Deutschland). Hallesches Jahrbucher für Geowissenschaften, 24:4755.Google Scholar
Hellmund, M. and Hellmund, W. 2002c. Neufunde und Ergänzungen zur Fortpflanzungsbiologie fossiler Kleinlibellen (Insecta, Odonata, Zygoptera). Stuttgarter Beiträge zur Naturkunde (B), 319, 26 p.Google Scholar
Jarzembowski, E. A. 1990. Early Cretaceous zygopteroids of southern England, with the description of Cretacoenagrion alleni gen. nov., spec. nov. (Zygoptera: Coenagrionidae: “Anisozygoptera”: Tarsophlebiidae, Euthemistidae). Odonatologica, 19:2737.Google Scholar
Jarzembowski, E. A., Martínez-Delclòs, X., Bechley, G., Nel, A., Coram, R., and Escuillié, F. 1998. The Mesozoic non-calopterygoid Zygoptera: Description of new genera and species from the Lower Cretaceous of Brazil and their phylogenetic significance (Odonata, Zygoptera, Coenagrionoidea, Hemiphlebioidea, Lestoidea). Cretaceous Research, 19:403444.CrossRefGoogle Scholar
Jell, P. A. 2004. The fossil insects of Australia. Memoirs of the Queensland Museum, 50:1124.Google Scholar
Johnston, J. E. 1993. Insects, spiders, and plants from the Tallahatta Formation (middle Eocene) in Benton County, Mississippi. Mississippi Geology, 14:7182.Google Scholar
Jurzitza, G. 1974. Antiagrion gayai (Selys, 1876) und A. grinsbergsi spec. nov., zwei Verwechlungsarten aus Chile (Zygoptera: Coenagrionidae). Odonatologica, 3:221239.Google Scholar
Kelber, K. P. 1988. Was ist Equisetites foveolatus?, p. 166184. In Hagdorn, H. (ed.), Neue Forschung zur Erdgeschichte von Crailsheim: Sonderbände der Gesellschaft für Naturkunde in Württemberg.Google Scholar
Krassilov, V. and Silantieva, N. 2008. Systematic description of phyllostigmas, p. 6575. In Krassilov, V. and Rasnitsyn, A. (eds.), Plant-arthropod interactions: the early angiosperm history. Evidence from the Cretaceous of Israel. Pensoft Publishers & Brill, Sofia-Moscow and Leiden-Boston.CrossRefGoogle Scholar
Krassilov, V., Silantieva, N., Hellmund, M., and Hellmund, W. 2007. Insect egg sets on angiosperm leaves from the Lower Cretaceous of Negev, Israel. Cretaceous Research, 28:803811.CrossRefGoogle Scholar
Kumar, A. and Prasad, M. 1977. Reproductive behaviour in Neurobasis chinensis chinensis (Linnaeus) (Zygoptera: Calopterygidae). Odonatologica, 6:163171.Google Scholar
Labandeira, C. C. 1998. Early history of arthropod and vascular plant associations. Annual Review of Earth and Planetary Sciences, 26:329377.CrossRefGoogle Scholar
Labandeira, C. C. 2002a. Paleobiology of middle Eocene plant-insect associations from the Pacific Northwest: A preliminary report. Rocky Mountain Geology, 37:3159.CrossRefGoogle Scholar
Labandeira, C. C. 2002b. The history of associations between plants and animals, p. 2674, 248-261. In Herrera, C. M. and Pellmyr, O. (eds.), Plant-Animal Interactions: An Evolutionary Approach. London, Blackwell Science.Google Scholar
Labandeira, C. C. 2006. Silurian to Triassic plant and hexapod clades and their associations: New data, a review, and interpretations. Arthropod Systematics & Phylogeny, 64:5394.CrossRefGoogle Scholar
Labandeira, C. C., Johnson, K. R., and Lang, P. 2002. Preliminary assessment of insect herbivory across the Cretaceous-Tertiary boundary: Major extinction and minimum rebound, p. 297327. In Hartman, J. H., Johnson, K. K., and Nichols, D. J. (eds.), The Hell Creek Formation and the Cretaceous-Tertiary boundary in the northern Great Plains: An integrated continental record of the end of the Cretaceous. Geological Society of America Special Paper 361.Google Scholar
Labandeira, C. C., Wilf, P., Johnson, K. R., and Marsh, F. 2007. Guide to Insect (and Other) Damage Types on Compressed Plant Fossils (Version 3.0-Spring 2007). Washington, D.C., Smithsonian Institution, 26 p.Google Scholar
Lewis, S. E. 1992. Insects of the Klondike Mountain Formation, Republic, Washington. Washington Geology, 20:1519.Google Scholar
Lewis, S. E. and Carroll, M. A. 1991. Coleopterous eggs deposition on alder leaves from the Klondike Mountain Formation (middle Eocene), northeastern Washington. Journal of Paleontology, 65:334335.CrossRefGoogle Scholar
Lewis, S. E. and Carroll, M. A. 1992. Coleopterous egg deposition on an alder leaf from the John Day Formation (Oligocene), north-central Oregon. Occasional Papers in Paleobiology, St. Cloud State University, 6:14.Google Scholar
Lutz, P. E. and Pittman, A. R. 1968. Oviposition and early developmental stages of Lestes eurinos (Odonata: Lestidae). American Midland Naturalist, 80:4351.CrossRefGoogle Scholar
Martins-Neto, R. G. 2005. Estágio atual da paleoartropodologia brasileira: Hexápodes, miriápodos, crustáceos (Isopoda, Decapoda, Eucrustacea e Copepoda) e quelicerados. Arquivos do Museu Nacional, Rio de Janeiro, 63:471494.Google Scholar
Martins-Neto, R. G., Gallego, O. F., and Melchor, R. N. 2003. The Triassic insect fauna from South America (Argentina, Brazil and Chile): A checklist (except Blattodea and Coleoptera) and descriptions of new taxa. Acta Geologica Cracoviensia, 46:229256.Google Scholar
Matushkina, N. and Gorb, S. 2007. Mechanical properties of the endophytic ovipositor in damselflies (Zygoptera, Odonata) and their oviposition substrates. Zoology, 110:167175.CrossRefGoogle ScholarPubMed
Miller, P. L. and Miller, A. K. 1988. Reproductive behaviour and two modes of oviposition in Phaon iridipennis (Burmeister) (Zygoptera: Calopterygidae). Odonatologica, 17:187194.Google Scholar
Moura, G., Barreto, A., and Báez, A. M. 2006. A Biota da Formação Crato, Eocretáceo da Bacia do Araripe, Nordeste do Brasil. Olinda, Pernambuco, Editora Livro Rápido, 101 p.Google Scholar
Nel, A. and Paicheler, J. C. 1994. Les Lestoidea (Odonata, Zygoptera) fossiles: Un inventaire critique. Annales de Paléontologie, 80:159.Google Scholar
Peñalver, E. and Delclòs, X. 2004. Insectos del Mioceno inferior de Ribelsalbes (Castellón, España). Interacciones planta-insecto. Treballs del Museu de Geologia de Barcelona, 12:6995.Google Scholar
Petrulevicius, J. F. 2001. Insectos del Paleógeno del Noroeste de la Argentina. Sistemática, tafonomía y paleosinecología. , , La Plata, 229 p.Google Scholar
Petrulevicius, J. F. 2005. Avances en el conocimiento de la diversidad de insectos de Laguna del Hunco, Eoceno inferior de Chubut, Patagonia, Argentina. Resúmenes de Comunicaciones Reunión Anual de Comunicaciones y Primer Simposio de Paleontología y Geología de la Península Valdés, p. 66.Google Scholar
Petrulevicius, J. F., Nel, A., and Muzón, J. 1999. A new libelluloid family from the Upper Paleocene of Argentina. Palaeontology, 42:677682.CrossRefGoogle Scholar
Petrulevicius, J. F. and Martins-Neto, R. G. 2000. Checklist of South American Cenozoic Insects. Acta Geologica Hispanica, 35:135147.Google Scholar
Petrulevicius, J. F. and Nel, A. 2002a. New palaeomacromiid dragonflies from the upper Paleocene of Argentina. Palaeontology, 45:751758.CrossRefGoogle Scholar
Petrulevicius, J. F. and Nel, A. 2002b. A new libelluloid dragonfly from late Paleocene deposits in Argentina (Odonata: Italoansida). European Journal of Entomology, 99:485489.CrossRefGoogle Scholar
Petrulevicius, J. F. and Nel, A. 2003a. Frenguelliidae, a new family of dragonflies from the earliest Eocene of Argentina (Insecta: Odonata): Phylogenetic relationships within Odonata. Journal of Natural History, 37:29092917.CrossRefGoogle Scholar
Petrulevicius, J. F. and Nel, A. 2003b. A new libelluloid dragonfly (Insecta: Odonata: Italoansida) from the late Paleocene of Argentina. Geobios, 36:401406.CrossRefGoogle Scholar
Petrulevicius, J. F. and Nel, A. 2003c. Oldest petalurid dragonfly (Insecta: Odonata): A Lower Cretaceous specimen from South Patagonia, Argentina. Cretaceous Research, 24:3134.CrossRefGoogle Scholar
Petrulevicius, J. F. and Nel, A. 2004a. A new damselfly family from the late Paleocene of Argentina (Insecta: Odonata: Zygoptera). Palaeontology, 47:109116.CrossRefGoogle Scholar
Petrulevicius, J. F. and Nel, A. 2004b. Recognition of the first fossil lestoid damselfly (Insecta: Zygoptera) in South America. Biogeographic and phylogenetic remarks. Journal of Paleontology, 78:798801.2.0.CO;2>CrossRefGoogle Scholar
Petrulevicius, J. F. and Nel, A. 2005. Austroperilestidae, A new family of Damselflies from the early Eocene of Argentina (Insecta: Odonata): Phylogenetic relationships within Odonata. Journal of Paleontology, 79:658662.CrossRefGoogle Scholar
Petrulevicius, J. F. and Nel, A. 2007. Enigmatic and little known Odonata (Insecta) from the Paleogene of Patagonia and northwest Argentina. Annales de la Société Entomologique de France (N.S.), 43:341347.CrossRefGoogle Scholar
Pott, C., Labandeira, C. C., Krings, M., and Kerp, H. 2008. Fossil insect eggs and ovipositional damage on bennettitalean leaf cuticles from the Carnian (Upper Triassic) of Austria. Journal of Paleontology, 82:778789.CrossRefGoogle Scholar
Prevec, R., Labandeira, C. C., Neveling, J., Gastaldo, R. A., Looy, C., and Bamford, M. 2009. A portrait of a Gondwanan ecosystem: A new Late Permian locality from KwaZulu-Natal, South Africa. Review of Paleobotany and Palynology, submitted.CrossRefGoogle Scholar
Riek, E. F. and Kukalová-Peck, J. 1984. A new interpretation of dragonfly wing venation based upon early Upper Carboniferous fossils from Argentina (Insecta: Odonatoidea) and basic character states in pterygote wings. Canadian Journal of Zoology, 62:11501166.CrossRefGoogle Scholar
Romero, E. J. and Hickey, L. J. 1976. Fossil leaf of Akaniaceae from Paleocene beds in Argentina. Bulletin of the Torrey Botanical Club, 103:126131.CrossRefGoogle Scholar
Roselt, G. 1954. Ein neuer Schachtelhalm aus dem Keuper und Beiträge zur Kenntnis von Neocalamites meriani Brongn. Geologie, 3:617643.Google Scholar
Rossi De García, E. 1983. Insectos fósiles de la Formación Ventana (Eoceno). Provincia de Neuquén. Revista de la Asociación Geológica Argentina, 38:1723.Google Scholar
Sáez, M. D. 1941. Noticias sobre peces fósiles Argentinos. Siluroideos Terciarios de Chubut. Notas del Museo de La Plata, 35:451457.Google Scholar
Sahlén, G. 1995. Transmission electron microscopy of the eggshell in five damselflies (Zygoptera: Coenagrionidae, Megapodagrionidae, Calopterygidae). Odonatologica, 24:311318.Google Scholar
Sarzetti, L. C., Labandeira, C. C., and Genise, J. F. 2008. A leafcutter bee trace fossil from the middle Eocene of Patagonia, Argentina, and a review of megachilid (Hymenoptera) ichnology. Palaeontology, 51:933941.CrossRefGoogle Scholar
Say, T. 1839. Descriptions of new North American neuropterous insects and observations on some already described. Journal of the Academy of Natural Science of Philadelphia, 8:946.Google Scholar
Schaarschmidt, F. 1992. The vegetation: Fossil plants as witness of a warm climate, p. 2952. In Schaal, W. and Ziegler, W. (eds.), Messel: An Insight into the History of Life and of the Earth, Oxford, Clarendon Press, Oxford.Google Scholar
Schiemenz, H. 1957. Die Libellen Unserer Heimat. Stuttgart: Franckh'sche Franckh'sche Verlagshandlung, Sttutgart, 154 p.Google Scholar
Straus, A. 1977. Gallen, Minen und andere Fraßspuren im Pliozän von Willershausen am Harz. Verhandlungen des Botanischen Vereins der Provinz Brandenburg 113:4380.Google Scholar
Tillyard, R. J. 1917. The Biology of Dragonflies: (Odonata or Paraneuroptera). Cambridge University Press, 396 p.Google Scholar
Van Ameron, H. W. J. 1966. Phagophytichnus ekowski nov. ichnogen. & nov. ichnosp., eine Missbildung infolge von Insektenfrass, aus dem spanischen Stephanien (Provinz Leon). Leidse Geologische Mededelingen, 38:181184.Google Scholar
Van Konijnenburg-Van Cittert, J. H. A. and Schmeißner, S. 1999. Fossil insect eggs on Lower Jurassic plant remains from Bavaria (Germany). Palaeogeography, Palaeoclimatology, Palaeoecology, 152:215223.CrossRefGoogle Scholar
Vasilenko, D. V. 2005. Damages on Mesozoic plants from the Transbaikalian Locality Chernovskie Kopi. Paleontological Journal, 39:5459.Google Scholar
Vasilenko, D. V. and Rasnitsyn, A. 2007. Fossil oviposition of dragonflies: Review and interpretation. Paleontological Journal, 41:11561161.CrossRefGoogle Scholar
Vasilenko, D. V. 2008. Insect on aquatic leaves Quereuxia from the Upper Cretaceous of the Amur Region. Paleontological Journal, 42:514521.CrossRefGoogle Scholar
Vasilenko, D. V. 2006. Margin feeding damage on the leaves of conifers and Ginkgoales from the Mesozoic of Transbaikalia. Paleontological Journal, 40:5355.CrossRefGoogle Scholar
Vasilenko, D. V. 2007. Feeding damage on Upper Permian plants from the Sukhona River. Paleontological Journal, 4:207211.CrossRefGoogle Scholar
Watanabe, M. and Adachi, Y. 1987. Fecundity and oviposition pattern of the damselfly Copera annulata (Selys) (Zygoptera: Platycnemidae). Odonatologia, 16:8592.Google Scholar
Wesenberg-Lund, C. 1913a. Odonaten-Studien. Internationale Revue der Gesamten Hydrobiologie und Hydrographie, 6:155228.CrossRefGoogle Scholar
Wesenberg-Lund, C. 1913b. Fortpflanzungsverhältnisse: Paarung und Eiablage der Süßwasserinsekten: Naturwissenschaftlichen Forschung Fortschritte, 8:161286.Google Scholar
Wesenberg-Lund, C. 1943. Biologie der Süsswasserinsekten. Copenhagen, Gyldendalske Boghandel-Nordisk Forlag, 682 p.CrossRefGoogle Scholar
Wilf, P., Cúneo, N. R., Johnson, K. R., Hicks, J. F., Wing, S. L., and Obradovich, J. D. 2003. High plant diversity in Eocene South America: Evidence from Patagonia. Science, 300:122125.CrossRefGoogle ScholarPubMed
Wilf, P., Johnson, K. R., Cúneo, R. N., Smith, M. E., Singer, B. S., and Gandolfo, M. A. 2005a. Eocene plant diversity at Laguna del Hunco and Río Pichileufú, Patagonia, Argentina. The American Naturalist 165:643650.CrossRefGoogle ScholarPubMed
Wilf, P., Labandeira, C. C., Johnson, K. R., and Cúneo, N. R. 2005b. Richness of plant-insect associations in Eocene Patagonia: A legacy for South American biodiversity. Proceedings of the National Academy of Sciences, U.S.A. 102:89448948.CrossRefGoogle ScholarPubMed
Wilf, P., Gandolfo, M. A., Johnson, K. R., and Cúneo, N. R. 2007. Biogeographic significance of the Laguna del Hunco flora, early Eocene of Patagonia, Argentina. Geological Society of America, Abstracts with Programs 39, 585 p.Google Scholar
Wilf, P., Little, S. A., Iglesias, A., Zamaloa, M. C., Gandolfo, M. A., Johnson, K. R., and Cúneo, N. R. 2008. Discovery of Papuacedrus (Cupressaceae, Libocedrinae) in Eocene Patagonia clarifies the Southern Rainforest enigma. Botanical Society of America Annual Meeting Abstracts (Vancouver, British Columbia), p. 391.Google Scholar
Wootton, R. J., Kukalová-Peck, J., Newmann, D. J. S., and Muzón, J. 1998. Smart aerofoils in the mid-Carboniferous: How well could Palaeozoic dragonflies fly? Science, 282:749751.CrossRefGoogle Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292:686693.CrossRefGoogle ScholarPubMed
Zamaloa, M. C., Gandolfo, M. A., González, C. C., Romero, E. J., Cúneo, N. R., and Wilf, P. 2006. Casuarinaceae from the Eocene of Patagonia, Argentina. International Journal of Plant Sciences, 167:12791289.CrossRefGoogle Scholar
Zeh, D. W., Zeh, J. A., and Smith, R. L. 1989. Ovipositors, amnions and eggshell architecture in the diversification of terrestrial arthropods. Quarterly Review of Biology, 64:147168.CrossRefGoogle Scholar
Zherikhin, V. V. 2002. Insect trace fossils. p. 303324. In Rasnitsyn, A. P. and Quicke, D. L. J. (eds.), History of Insects. Kluwer Academic Publishers, Dordrecht.Google Scholar