Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-31T04:16:22.044Z Has data issue: false hasContentIssue false

A new Isectolophid Tapiromorph (Perissodactyla, Mammalia) from the Early Eocene of Pakistan

Published online by Cambridge University Press:  14 July 2015

M. C. Maas
Affiliation:
1Department of Anatomy, Northeastern Ohio Universities College of Medicine, P.O. Box 95, Rootstown 44272 2Department of Anthropology and Laboratory of Vertebrate Paleontology, University of Texas, Austin 78712
S. T. Hussain
Affiliation:
3Department of Anatomy, Howard University, Washington D.C. 20059
J. J. M. Leinders
Affiliation:
4Open University of the Netherlands, P.O. Box 2960 6401 DL Heerlen, The Netherlands
J. G. M. Thewissen
Affiliation:
1Department of Anatomy, Northeastern Ohio Universities College of Medicine, P.O. Box 95, Rootstown 44272

Abstract

A new genus and species of tapiromorph, Karagalax mamikhelensis, is described from the Eocene Mami Khel Formation of northwest Pakistan. The new species is known from adult and juvenile dentitions, juvenile skulls, and partial postcrania. It is the most primitive perissodactyl yet reported from Indo-Pakistan. The morphology of its lophodont molars indicates that Karagalax is a tapiromorph, and it is here included in the primitive family Isectolophidae. Karagalax is more derived (more lophodont) than North American isectolophids Systemodon and Cardiolophus or the Asian early Eocene Orientolophus and Homogalax wutuensis, and more primitive (less lophodont) than North American Homogalax and Isectolophus. It is distinct from the poorly known and enigmatic Indian isectolophid Sastrilophus. Karagalax lacks any derived features of the Deperetellidae, Helaletidae or Lophialetidae, including Kalakotia, a primitive lophialetid from the middle Eocene of northwest India. The partial postcrania of Karagalax, which include fragmentary humeri, femora, ulnae, tibiae and metapodials, show a combination of primitive and derived features and suggest that it was more cursorial than other basal tapiromorphs for which postcrania are known.

A provisional analysis of the phylogenetic positions of Karagalax and Kalakotia supports the hypothesis that primitive perissodactyls dispersed to Indo-Pakistan, most probably by way of continental Asia. The evolutionary position of Karagalax is consistent with an early Eocene age for H-GSP Locality 300, as argued previously on the basis of other mammals.

Type
Research Article
Copyright
Copyright © The Paleontological Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beard, K. C. 1998. East of Eden: Asia as an important center of taxonomic origination in mammalian evolution, p. 539. In Beard, K. C. and Dawson, M. R. (eds.), Dawn of the Age of Mammals in Asia. Bulletin of Carnegie Museum of Natural History, 34.Google Scholar
Besse, J., Courtillot, V., Pozzi, J. P., Westphal, M., and Zhou., Y. X. 1984. Palaeomagnetic estimates of crustal shortening in the Himalayan thrusts and Zango suture. Nature, 311:621626.CrossRefGoogle Scholar
Bruijn, H. de, Hussain, S. T., and Leinders., J. J. M. 1982. On some early Eocene rodent remains from Barbara Banda, Kohat, Pakistan, and the early history of the order Rodentia. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series B, 85:249258.Google Scholar
Chow, M. C., and Li., C. K. 1965. Homogalax and Heptodon of Shantung. Vertebrata PalAsiatica, 9:1521.Google Scholar
Curray, J. R., Emmel, F. J., Moore, D. G., and Raitt., R. W. 1982. Structure, tectonics, and geological history of the northeastern Indian Ocean, p. 399450. In Nairn, A. E. M. and Stehli, F. G. (eds.), The Ocean Basins and Margins, Volume 6, The Indian Ocean. Plenum Press, New York.CrossRefGoogle Scholar
Dashzeveg, D. 1979. The find of Homogalax (Perissodactyla, Tapiroidea) in Mongolia and its stratigraphic significance. Naturalist Society of Moscow, Geological Series, 54:175281. (In Russian)Google Scholar
Dashzeveg, D. 1988. Holarctic correlation of nonmarine Palaeocene-Eocene boundary strata using mammals. Journal of the Geological Society, London, 145:473478.CrossRefGoogle Scholar
Froehlich, D. J. 1996. The systematics of basal perissodactyls and the status of the North American early equids. Unpublished Ph.D. dissertation. The University of Texas, Austin, 512 p.Google Scholar
Froehlich, D. J. 1999. Phylogenetic systematics of basal perissodactyls. Journal of Vertebrate Paleontology, 19:140159.CrossRefGoogle Scholar
Gentry, A. W., and Hooker., J. J. 1988. The phylogeny of the Artiodactyla, p. 233272. In Benton, M. J. (ed.), The Phylogeny and Classification of the Tetrapods, Volume 2, Mammals. Systematics Association Special Volume No. 35B. Clarendon Press, Oxford.Google Scholar
Gingerich, P. D. 1990. African dawn for primates. Nature, 346:411.CrossRefGoogle ScholarPubMed
Gingerich, P. D. 1991. Systematics and evolution of early Eocene Perissodactyla (Mammalia) in the Clarks Fork Basin, Wyoming. Contributions from the Museum of Paleontology, The University of Michigan, 28:181213.Google Scholar
Gingerich, P. D., Bloch, J. I., Gunnell, G. F., Arif, M., and Clyde., W. C. 1999. New early Eocene mammalian fauna from the upper Ghazij Formation of Baluchistan (Pakistan). Journal of Vertebrate Paleontology, 19:47A (Abstract).Google Scholar
Hooker, J. J. 1984. A primitive ceratomorph (Perissodactyla, Mammalia) from the early Tertiary of Europe. Zoological Journal of the Linnaean Society, 82:229244.CrossRefGoogle Scholar
Hooker, J. J. 1989. Character polarities in early perissodactyls and their significance for Hyracotherium and infraordinal relationships, p. 79101. In Prothero, D. R. and Schoch, R. M. (eds.), The Evolution of Perissodactyls. Oxford University Press, New York.Google Scholar
Hooker, J. J. 1994. The beginning of the equoid radiation. Zoological Journal of the Linnean Society, 112:2963.CrossRefGoogle Scholar
Krause, D. W. and Maas., M. C. 1990. The biogeographic origins of late Paleocene-early Eocene mammalian immigrants to the Western Interior of North America, p. 71105. In Bown, T. M. and Rose, K. D. (eds.), Dawn of the Age of Mammals in the Northern Part of the Rocky Mountain Interior, Geological Society of America Special Paper 243.Google Scholar
Kumar, K., and Jolly., A. 1986. Earliest artiodactyl (Diacodexis, Dichobunidae: Mammalia) from the Eocene of Kalakot, north-western Himalaya, India. Indian Society of Geology Bulletin, 2:2030.Google Scholar
Leinders, J., Arif, M., de Bruijn, H., Hussain, S. T., and Wessels., W. 1999. Tertiary continental deposits of northwestern Pakistan and remarks on the collision between the Indian and Asian plates, p. 199213. In Reumer, J. W. F. and De Vos, J. (eds.), Elephants Have a Snorkel!: Papers in Honor of Paul Y. Sondaar. DEINSEA, Annual of the Natural History Museum of Rotterdam, 7.Google Scholar
Lucas, S. G., and Schoch., R. M. 1981. Basalina, a tillodont from the Eocene of Pakistan. Mitteilungen der Bayerischen Staastssammlung für Palaontologie und Historische Geologie, 21:8995.Google Scholar
Lucas, S. G., Emry, R. J., and Bayshashov., B. U. 1997. Eocene Perissodactyla from the Shinzhaly River, eastern Kazakhstan. Journal of Vertebrate Paleontology, 17:235246.CrossRefGoogle Scholar
Maddison, W. P., and Maddison., D. R. 1992. MacClade: Analysis of Phylogeny and Character Evolution, version 3.0. Sinauer Associates, Inc.. Sunderland, Massachusetts, 398 p.Google Scholar
McKenna, M. C., and Bell., S. K. 1997. Classification of Mammals Above the Species Level. Columbia University Press, New York, 631 p.Google Scholar
Meissner, D. R., Master, J. M., Rashid, M. A., and Hussain., M. 1974. Stratigraphy of the Kohat Quadrangle, Pakistan. United States Geological Survey Professional Papers, 716-D:130.Google Scholar
Patriat, P., and Achache., J. 1984. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 311:615621.CrossRefGoogle Scholar
Pivnik, D. A., and Wells., N. A. 1996. The transition from Tethys to the Himalaya as recorded in northwest Pakistan. Geological Society of America Bulletin, 108:12951313.2.3.CO;2>CrossRefGoogle Scholar
Radinsky, L. B. 1963. Origin and early evolution of North American Tapiroidea. Peabody Museum of Natural History Yale University Bulletin 17, 106.Google Scholar
Radinsky, L. B. 1965a. Evolution of the tapiroid skeleton from Heptodon to Tapirus . Bulletin of the Museum of Comparative Zoology, 134:69106.Google Scholar
Radinsky, L. B. 1965b. Early Tertiary Tapiroidea of Asia. Bulletin of the American Museum of Natural History, 129:183263.Google Scholar
Ranga Rao, A. 1972. New mammalian genera and species from the Kalakot zone of Himalayan foot hills near Kalakot, Jammu and Kashmir State, India. Special Paper No. 1, Directorate of Geology and Natural Gas Commission, Dehra Dun, India, 22 p.Google Scholar
Rose, K. D. 1996. Skeleton of early Eocene Homogalax and the origin of Perissodactyla. Palaeovertebrata, 25:243260.Google Scholar
Russell, D. E., and Gingerich., P. D. 1987. Nouveaux Primates de l'Éocène du Pakistan. Comptes Rendus Academie Science Paris, Série II, 304:209214.Google Scholar
Russell, D. E, and Zhai., R.-J. 1987. The Paleogene of Asia: mammals and stratigraphy. Mémoires du Muséum national d'histoire naturelle, série C, Sciences de la terre, tome 52, Paris.Google Scholar
Russell, D. E, Thewissen, J. G. M., and Sigogneau-Russell., D. 1983. A new dichobunid artiodactyl from the Eocene of northwest Pakistan, part II: cranial osteology. Proceedings Koninklijke Nederlandse Akademie, 86:285300.Google Scholar
Sahni, A., and Khare., S. K. 1971. Three new Eocene mammals from Rajauri District, Jammu and Kashmir. Journal of the Palaeontological Society of India, 16:4153.Google Scholar
Sahni, A., and Khare., S. K. 1972. Additional Eocene mammals from the Subathu Formation of Jammu and Kashmir. Journal of the Palaeontological Society of India, 17:3149.Google Scholar
Sahni, A., and Kumar, V. 1974. Palaeogene palaeobiogeography of the Indian subcontinent. Palaeogeography, Palaeoclimatology, Palaeoecology, 15:209226.CrossRefGoogle Scholar
Sahni, A., Bhatia, S. B., Hartenberger, J.-L., Jaeger, J.-J., Kumar, K., Sudre, J., and Vianey-Liaud., M. 1981. Vertebrates from the type section of the Subathu Formation and comments on the Palaeobiogeography of the Indian subcontinent during the early Palaeogene. Bulletin of the Indian Geological Association, 14:89100.Google Scholar
Schoch, R. M. 1989. A review of the tapiroids, p. 298320. In Prothero, D. R. and Schoch, R. M. (eds.), The Evolution of Perissodactyls. Oxford University Press, New York.Google Scholar
Theodor, J. M. 1996. Phylogeny, locomotor evolution, and diversity patterns in Eocene Artiodactyla. Unpublished Ph.D. dissertation. University of California, Berkeley, 177 p.Google Scholar
Thewissen, J. G. M. 1990. Comment on “Paleontological view of the ages of the Deccan Traps, the Cretaceous/Tertiary boundary, and the India-Asia collision.” Geology, 18:185188.2.3.CO;2>CrossRefGoogle Scholar
Thewissen, J. G. M., and Hussain., S. T. 1990. Postcranial osteology of the most primitive artiodactyl Diacodexis pakistanensis (Dichobunidae). Anatomy, Histology, and Embryology, 19:3748.CrossRefGoogle Scholar
Thewissen, J. G. M., and McKenna., M. C. 1992. Paleobiogeography of Indo-Pakistan: a response to Briggs, Patterson, and Owen. Systematic Biology, 41:248251.CrossRefGoogle Scholar
Thewissen, J. G. M., Gingerich, P. D., and Russell., D. E. 1987. Artiodactyla and Perissodactyla (Mammalia) from the early-middle Eocene Kuldana formation of Kohat (Pakistan). Contributions from the Museum of Paleontology, The University of Michigan, 27:247274.Google Scholar
Thewissen, J. G. M., Williams, E. M., and Hussain., S. T. In review. Eocene terrestrial mammal faunas from northern Indo-Pakistan. Journal of Vertebrate Paleontology.Google Scholar
Thewissen, J. G. M., Russell, D. E., Gingerich, P. D., and Hussain., S. T. 1983. A new dichobunid artiodactyl (Mammalia) from the Eocene of North-West Pakistan. Dentition and Classification. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series B, 86:153180.Google Scholar
Thewissen, J. G. M., Hussain, S. T., Arif, M., Aslan, A., Madar, S. I., and Roe., L. J. 1997. The origin of the modern orders of mammals within the context of Paleogene deposition in northern Pakistan, p. 8084. In Third Geosas Workshop on Siwaliks of South Asia: Extended Abstracts. Geological Survey of Pakistan Ministry of Petroleum and Natural Resources, Government of Pakistan.Google Scholar
Ting, S. Y. 1993. A preliminary report on an early Eocene mammalian fauna from Hengdong, Hunan Province, China. Kaupia, Darmstädter Beiträge zur Naturgeschichte, 3:201207.Google Scholar
Ting, S. Y. 1995. An early Eocene mammalian fauna from Hengdong, Hunan Province, China. Unpublished Ph.D. dissertation, The Louisiana State University, 202 p.Google Scholar
Ting, S. Y. 1998. Paleocene and early Eocene Land Mammal ages of Asia, p. 124147. In Beard, K. C. and Dawson, M. R. (eds.), Dawn of the Age of Mammals in Asia. Bulletin of Carnegie Museum of Natural History, 34.Google Scholar
Tong, Y., and Wang., J. 1998. A preliminary report on the early Eocene mammals of the Wutu Fauna, Shangdong Province, China, p. 186193. In Beard, K. C. and Dawson, M. R. (eds.), Dawn of the Age of Mammals in the Asia. Bulletin of Carnegie Museum of Natural History, 34.Google Scholar
Wells, N. A. 1983. Transient streams in sand-poor redbeds: early-middle Eocene Kuldana Formation of northern Pakistan. Special Publications of the International Association of Sedimentologists, 6:393403.Google Scholar
West, R. M. 1980. Middle Eocene large mammal assemblage with Tethyan affinities, Ganda Kas Region, Pakistan. Journal of Paleontology, 54:508533.Google Scholar