Skip to main content
Log in

Differential response of root morphology to potassium deficient stress among rice genotypes varying in potassium efficiency

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Disparity in the root morphology of six rice (Oryza sativa L.) genotypes varying in potassium (K) efficiency was studied with three K levels: 5 mg/L (low), 10 mg/L (moderate) and 40 mg/L (adequate) in hydroponic culture. Morphological ’parameters included root length, surface area, volume and count of lateral roots, as well as fine (diameter<0.2 mm) and thick (diameter>0.2 mm) roots. The results indicate that the root growth of all genotypes was reduced under low K, but moderate K deficiency increased the root length of the efficient genotypes. At deficient and moderate K levels, all the efficient rice genotypes developed more fine roots (diameter<0.2 mm) than the inefficient ones. Both fine root count and root surface area were found to be the best parameters to portray K stress in rice. In accordance with the root morphology, higher K concentrations were noted in shoots of the efficient genotypes when grown at moderate and deficient K levels, indicating that root morphology parameters are involved in root uptake for K and in the translocatio of K up to shoots. K deficiency affected not only the root morphology, but also the root ultra-structure. The roots of high-efficient genotypes had stronger tolerance to K deficient stress for root membrane damage, and could maintain the developed root architecture to adapt to the low K growth medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baligar, V.C., Barber, S.A., 1979. Genotype differences of corn in ion uptake. Agron. J., 71(5):870–873.

    Google Scholar 

  • Chen, J.J., Gabelman, W.H., 1995. Isolation of tomato strains varying in potassium acquisition using a sand-zeolite culture system. Plant Soil, 176(1):65–70. [doi:10.1007/BF00017676]

    Article  CAS  Google Scholar 

  • Dobermann, A., Kassman, K.G., Mamaril, C.P., Sheehy, J.E., 1998. Management of phosphorus, potassium, and sulfur in itensive irrigated lowland rice. Field Crops Res., 56(1–2): 113–138. [doi:10.1016/S0378-4290(97)00124-X]

    Article  Google Scholar 

  • Høgh-Jensen, H.H., Pedersen, M.B., 2003. Morphological plasticity by crop plants and their potassium use efficiency. J. Plant Nutr., 26(5):969–984. [doi:10.1081/PLN-120020069]

    Article  CAS  Google Scholar 

  • James, D.W., Tindall, T.A., Turst, C.J., Hussein, A.N., 1995. Alfalfa cultivar responses to phosphorus and potassium deficiency: biomass. J. Plant Nutr., 18(11):2431–2445.

    CAS  Google Scholar 

  • Liu, F.H., Liang, X.N., Zhang, S.W., 2000. Accumulation and utilization efficiency of potassium in ramie varieties. J. Plant Nutr., 23(2):785–792.

    Article  CAS  Google Scholar 

  • Liu, X.G., Liu, Z.X., Liu, F.X., 1987. Screening of rice genotypes tolerant to low K and their K uptake characteristics. J. Fujian Agric. Acad., 2(2):10–17 (in Chinese).

    Google Scholar 

  • Lynch, J.P., Lynch, A.F., Jonathan, P., 2007. Roots of the second green revolution. Aust. J. Bot., 55(5):493–512. [doi:10.1071/BT06118]

    Article  Google Scholar 

  • Marschner, H., 1995. Mineral Nutrition of Higher Plants. Academic Press, San Diego.

    Google Scholar 

  • Mengel, K., Steffens, D., 1985. Potassium uptake of ryegrass (Lolium perenne) and red clover (Trifolium pratense) as related to root parameters. Biol. Fert. Soils, 1(1):53–58. [doi:10.1007/BF00710971]

    Article  Google Scholar 

  • Peng, H.Y., Tian, S.K., Yang, X.E., 2005. Changes of root morphology and Pb uptake by two species of Elsholtzia under Pb toxicity. J. Zhejiang Univ. Sci. B, 6(6):546–552. [doi:10.1631/jzus.2005.B0546]

    Article  PubMed  CAS  Google Scholar 

  • Pettersson, S., Jensén, P., 1983. Variation among species and varieties in uptake and utilization of potassium. Plant Soil, 72(2–3):231–237. [doi:10.1007/BF02181962]

    Article  CAS  Google Scholar 

  • Rengel, Z., Marschner, P., 2005. Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytol., 168(2):305–312. [doi:10.1111/j.1469-8137.205.01558.x]

    Article  PubMed  CAS  Google Scholar 

  • Sale, P.W.G., Campbell, L.C., 1987. Differential response to K deficiency among soybean cultivars. Plant Soil, 104(2):183–190. [doi:10.1007/BF02372531]

    Article  CAS  Google Scholar 

  • Shea, P.E., Gerloff, G.C., Gabelman, W.H., 1968. Differing efficiencies of potassium utilization in strains of snapbeans, Phaseolus vulgaris L. Plant Soil, 28(2):337–346. [doi:10.1007/BF01880251]

    Article  CAS  Google Scholar 

  • Wang, X.G., Cao, M.J., Wang, W., 2005. Effect of potassium concentration in the soil on the morphological and physiological characteristics of soybean root. Soybean Sci., 24(2):126–130 (in Chinese).

    Article  CAS  Google Scholar 

  • Witt, C.A., Dobermann, S., Abdulrachman, S., Gines, H.C., Wang, G.H., 1999. Internal nutrient efficiencies of irrigated lowland rice in tropical and subtropical Asia. Field Crops Res., 63(2):113–138. [doi:10.1016/S0378-4290(99)0031-3]

    Article  Google Scholar 

  • Xie, Y.H., An, S.Q., Wu, B.F., Wang, W.W., 2006. Density-dependent root morphology and root distribution in the submerged plant Vallisneria natans. Environ. Exp. Bot., 57(1–2):195–200. [doi:10.1016/j.envexpbot.2005.06.001]

    Article  CAS  Google Scholar 

  • Yang, X.E., Liu, J.X., Wang, W.M., Li, H., Luo, A.C., Ye, Z.Q., Yang, Y.A., 2003. Genotypic differences and some associated plant traits in potassium internal use efficiency of lowland rice (Oryza sativa L.). Nutr. Cycl. Agroecosys., 67(3):273–282. [doi:10.1023/B:FRES.0000003665.90952.0c]

    Article  CAS  Google Scholar 

  • Yang, X.E., Wang, W.M., He, Z.L., 2004a. Physiological and Genetic Characteristics of High Nutrient Efficiency of Plants in Acid Soils. In: Wilson, M.J., He, Z.L., Yang, X.E. (Eds.), The Red Soils of China: Their Nature, Management and Utilization, Kluwer Academic Pubilshers, Dordrecht, the Netherlands, p. 78–83.

    Google Scholar 

  • Yang, X.E., Liu, J.X., WAng, W.M., 2004b. Potassium internal use efficiency relative to growth vigor, potassium distribution, and carbohydrate allocation in rice genotypes. J. Plant Nutr., 27(5):837–852. [doi:10.1081/PLN-120030674]

    Article  CAS  Google Scholar 

  • Yang, X.E., Li, H., Kirk, G.J.D., Dobbermann, A., 2005. Room-induced changes of potassium in the rhizosphere of lowland rice. Commun. Soil Sci. Plant Anal., 36(13):1947–1963. [doi:10.1081/CSS-200062529]

    Article  CAS  Google Scholar 

  • Zhang, G.P., Chen, J.X., Tirore, E.A., 1999. Genotypic variation for potassium uptake and utilization efficiency in wheat. Nutr. Cycl. Agroecosys., 54(1):41–48. [doi:10.1023/A:1009708012381]

    Article  Google Scholar 

  • Zou, C.Q., Li, Z.S., Li, J.Y., 2001. Study on difference in morphological and physiological characters of wheat varieties to potassium. Plant Nutr. Fert. Sci., 7(1):36–43 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-e Yang.

Additional information

Project supported by the Program for Changjiang Scholars and Innovative Research Team in University of China (No. IRT0536) and the National Basic Research Program (973) of China (No. 30740011)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, Yb., Yang, Xe., Feng, Y. et al. Differential response of root morphology to potassium deficient stress among rice genotypes varying in potassium efficiency. J. Zhejiang Univ. Sci. B 9, 427–434 (2008). https://doi.org/10.1631/jzus.B0710636

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B0710636

Key words

CLC number

Navigation