Skip to main content
Log in

A review of the use of pteridophytes for treating human ailments

蕨类植物治疗人类疾病的应用概况

  • Review
  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

The aim of this review was to explore the pharmacological activity of early tracheophytes (pteridophytes) as an alternative medicine for treating human ailments. As the first vascular plants, pteridophytes (aka, ferns and fern allies) are an ancient lineage, and human beings have been exploring and using taxa from this lineage for over 2000 years because of their beneficial properties. We have documented the medicinal uses of pteridophytes belonging to thirty different families. The lycophyte Selaginella sp. was shown in earlier studies to have multiple pharmacological activity, such as antioxidant, anti-inflammatory, anti-cancer, antidiabetic, antiviral, antimicrobial, and anti-Alzheimer properties. Among all the pteridophytes examined, taxa from the Pteridaceae, Polypodiaceae, and Adiantaceae exhibited significant medicinal activity. Based on our review, many pteridophytes have properties that could be used in alternative medicine for treatment of various human illnesses. Biotechnological tools can be used to preserve and even improve their bioactive molecules for the preparation of medicines against illness. Even though several studies have reported medicinal uses of ferns, the possible bioactive compounds of several pteridophytes have not been identified. Furthermore, their optimal dosage level and treatment strategies still need to be determined. Finally, the future direction of pteridophyte research is discussed.

概要

蕨类植物全世界约48 科250 属12000 种,目前只 有少数蕨类植物的生物学活性得到了研究,这些 研究已经证明蕨类植物的药用价值及其在植物 科学领域的重要性。本文旨在总结关于蕨类植物 的主要化学成分及药理活性,特别是其抗氧化活 性、抗肿瘤活性、抗糖尿病活性、抗病毒活性、 抗炎活性、抗菌活性、抗老年痴呆症和脑疾病活 性等,可用于替代医学的各种人类疾病治疗。然 而,它们的最佳剂量和治疗策略仍需要进一步研 究。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ajikumaran Nair S, Shylesh BS, Gopakumar B, et al., 2006. Anti-diabetes and hypoglycaemic properties of Hemionitis arifolia (Burm.) Moore in rats. J Ethnopharmacol, 1062:192–197. https://doi.org/10.1016/j.jep.2005.12.020

    Article  CAS  PubMed  Google Scholar 

  • Amaral S, Mira L, Nogueira JM, et al., 2009. Plant extracts with anti-inflammatory properties—a new approach for characterization of their bioactive compounds and establishment of structure—antioxidant activity relationships. Bioorg Med Chem, 175:1876–1883. https://doi.org/10.1016/j.bmc.2009.01.045

    Article  CAS  PubMed  Google Scholar 

  • Anonymous, 1952. The Wealth of India. Vol. I–II. Council of Scientific and Industrial Research, Publications, New Delhi.

  • Anonymous, 1966. The Wealth of India. Vol. I–II. Council of Scientific and Industrial Research, Publications, New Delhi.

  • Anonymous, 1972. The Wealth of India. Vol. I–II. Council of Scientific and Industrial Research, Publications, New Delhi.

  • Anonymous, 1986. Useful Plants of India. Council of Scientific and Industrial Research, Publications, New Delhi.

  • Asakawa Y, Ludwiczuk A, Nagashima F, 2013. Phytochemical and biological studies of bryophytes. Phytochemisty, 91:52–80. https://doi.org/10.1016/j.phytochem.2012.04.012

    Article  CAS  Google Scholar 

  • Austin DJ, Kristinson KG, Anderson RM, 1999. The relationship between the volume of antimicrobial consumption in human communities and the frequency of resistance. Proc Natl Acad Sci USA, 963:1152–1156. https://doi.org/10.1073/pnas.96.3.1152

    Article  CAS  PubMed  Google Scholar 

  • Azuma K, Nakayama M, Koshioka M, et al., 1999. Phenolic antioxidants from the leaves of Corchorus olitorius. J Agric Food Chem, 4710:3963–3966. https://doi.org/10.1021/jf990347p

    Article  CAS  PubMed  Google Scholar 

  • Bai D, 1993. Traditional Chinese medicines and new drug development. Pure Appl Chem, 656:1103–1112. https://doi.org/10.1351/pac199365061103

    Article  CAS  Google Scholar 

  • Baker ME, Blasco R, 1992. Expansion of the mammalian 3β-hydroxysteroid dehydrogenase/plant dihydroflavonols reductase superfamily to include bacterial cholesterol dehydrogenase, a bacterial UDP-galactose-4-epimerase and open reading frames in vaccinia virus and fish lymphocystis disease virus. FEBS Lett, 3011:89–93. https://doi.org/10.1016/0014-5793(92)80216-4

    Article  CAS  PubMed  Google Scholar 

  • Banerjee RD, Sen SP, 1980. Antibiotic activity of pteridophytes. Econom Bot, 343:284–298. https://doi.org/10.1007/BF02858649

    Article  Google Scholar 

  • Baruah NC, Sarma JC, Barua NC, et al., 1994. Germination and growth inhibitory sesquiterpene lactones and a flavornes from Tithonia diversifolia. Phytochemitry, 361: 29–36. https://doi.org/10.1016/S0031-9422(00)97006-7

    Article  CAS  Google Scholar 

  • Basile A, Spagnuolo V, Giordano S, et al., 1997. Induction of antibacterial activity by a-D-oligogalacturonides in Nephrolepis sp. (pteridophyta). Int J Antimic Agents, 82: 131–134. https://doi.org/10.1016/S0924-8579(96)00365-2

    Article  CAS  Google Scholar 

  • Baskaran X, Jeyachandran R, 2010. Evaluation of antioxidant and phytochemical analysis of Pteris tripartita Sw. a critically endangered fern from South India. J Fairy Lake Bot Gard, 93:28–34.

    Google Scholar 

  • Bazzano LA, Serdula MK, Liu S, 2003. Dietary intake of fruits and vegetables and risk of cardiovascular disease. Curr Atheroscler Rep, 56:492–499. https://doi.org/10.1007/s11883-003-0040-z

    Article  PubMed  Google Scholar 

  • Benjamin A, Manickam VS, 2007. Medicinal pteridophytes from the Western Ghats. Ind J Trad Knowl, 64:611–618.

    Google Scholar 

  • Berahou AA, Auhmani A, Fdil N, et al., 2007. Antibacterial activity of Quercus ilex bark’s extracts. J Ethnopharmacol, 1123:426–429. https://doi.org/10.1016/j.jep.2007.03.032

    Article  CAS  PubMed  Google Scholar 

  • Berti G, Bottari F, 1968. Constituents of ferns. In: Reinhold L, Livschitz Y (Eds.), Progress in Phytochemistry, Vol. 1. Wiley, London & New York, p.590–685.

    Google Scholar 

  • Besharat M, Rahimian M, Besharat S, et al., 2008. Antibacterial effects of Adiantum capillus-veneris ethanolic extract on three pathogenic bacteria in vitro. J Clin Diagn Res, 2:1242–1243.

    Google Scholar 

  • Bhattacharjee I, Chetterjee SK, Chetterjee SN, 2006. Antibacterial potentiality of Argemone mexicana solvent extracts against some pathogenic bacteria. Mem Ins Oswaldo Cruz, 1016:645–648. https://doi.org/10.1590/S0074-02762006000600011

    Article  Google Scholar 

  • Bi YF, Zheng XK, Feng WS, et al., 2004. Isolation and structural identification of chemical constituents from Selaginella tamariscina (Beauv.) Spring. Acta Pharmaceut Sin, 391:41–45 (in Chinese).

    CAS  Google Scholar 

  • Bloomfield SF, 2002. Illness and Cure in Tonga. Vava’u Press, Tonga.

    Google Scholar 

  • Bonet MA, Valles J, 2007. Ethnobotany of Montseny biosphere reserve (Catalonia, Iberian Peninsula): plants used in veterinary medicine. J Ethnopharmacol, 1101:130–147. https://doi.org/10.1016/j.jep.2006.09.016

    Article  PubMed  Google Scholar 

  • Bora H, Miguel OG, Andrade CA, et al., 2005. Determination of the level of polyphenols and their antioxidant potential in different fraction of leaf extracts from Dicksonia sellowiana (Presl.) Hook, Dicksoniaciae. Vis Academic, 62:38–47.

    CAS  Google Scholar 

  • Bremner P, Heinrich M, 2002. Natural products as targeted modulators of the nuclear factor kB pathway. J Pharm Pharmacol, 544:453–472. https://doi.org/10.1211/0022357021778637

    Article  CAS  PubMed  Google Scholar 

  • Burkill IH, 1996. A Dictionary of the Economic Products of the Malay Peninsula. Goverment of Malaysia and Singapore.

    Google Scholar 

  • Cai Y, Luo Q, Sun M, et al., 2004. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anti-cancer. Life Sci, 7417:2157–2184. https://doi.org/10.1016/j.lfs.2003.09.047

    Article  CAS  PubMed  Google Scholar 

  • Cambie RC, Ash J, 1994. Fijian Medicinal Plants. CSIRO, Melbourne.

    Book  Google Scholar 

  • Campos AR, Lima JRC, Uchoa DE, et al., 2006. Pro-erectile effects of an alkaloidal rich fraction from Aspidosperma ulei root bark in mice. J Ethnopharmacol, 104(1-2): 240–244. https://doi.org/10.1016/j.jep.2005.09.009

    Article  PubMed  Google Scholar 

  • Chai T, Panirchellvum S, Ong H, et al., 2012. Phenolic contents and antioxidant properties of Stenochlaena palustris, an edible medicinal fern. Bot Stud, 53:439–446.

    CAS  Google Scholar 

  • Chand Basha S, Sreenivasulu M, Pramod N, 2013. Antidiabetic activity of Actinopteris radiata (Linn.). Asian J Res Chem Pharm Sci, 11:1–6.

    Google Scholar 

  • Chanda S, Dave R, 2009. in vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties—an overview. Afr J Microbiol Res, 313:981–996.

    Google Scholar 

  • Chandran G, Muralidhara, 2014. Insights on the Neuromodulatory propensity of Selaginella (Sanjeevani) and its potential pharmacological applications. CNS Neurol Disord-Drug Targ, 131:82–95. https://doi.org/10.2174/18715273113126660188

    Article  CAS  Google Scholar 

  • Chang HC, Huang GJ, Agrawal DC, et al., 2007a. Antioxidant activities and polyphenol contents of six folk medicinal ferns used as “Gusuibu”. Bot Stud, 48:397–406.

    CAS  Google Scholar 

  • Chang HC, Agrawal DC, Kuo CL, et al., 2007b. in vitro culture of Drynaria fortunei, a fern species source of Chinese medicine “Gu-Sui-Bu”. in vitro Cell Dev Biol Plant, 432:133–139. https://doi.org/10.1007/s11627-007-9037-6

    Article  Google Scholar 

  • Chang HC, Gupta SK, Tasay HS, 2011. Studies on folk medicinal fern: an example of “Gu Sui-Bu”. In: Fernandez H, Kumar A, Revilla MA (Eds.), Working with Ferns, Issues and Applications. Springer New York Dordrecht Heidelberg, London, p.285–304.

    Chapter  Google Scholar 

  • Chao LR, Seguin E, Tillequin F, et al., 1987. New alkaloid glycosides from Selaginella doederleinii. J Nat Prod, 503:422–426. https://doi.org/10.1021/np50051a013

    Article  CAS  Google Scholar 

  • Chauhan V, Chauhan A, 2006. Oxidative stress in Alzheimer’s disease. Pathophysiology, 133:195–208. https://doi.org/10.1016/j.pathophys.2006.05.004

    Article  CAS  PubMed  Google Scholar 

  • Chen IN, Chang CC, Wang CY, et al., 2008. Antioxidant and antimicrobial activity of Zingiberaceae plants in Taiwan. Plant Foods Hum Nutr, 631:15–20. https://doi.org/10.1007/s11130-007-0063-7

    Article  CAS  PubMed  Google Scholar 

  • Chen JJ, Duh CY, Chen JF, 2005. New cytotoxic biflavonoids from Selaginella delicatula. Plant Med, 717:659–665. https://doi.org/10.1055/s-2005-871273

    Article  CAS  Google Scholar 

  • Chen K, Plumb GW, Bennett RN, et al., 2005. Antioxidant activities of extracts from five anti-viral medicinal plants. J Ethnopharmacol, 96(1-2):201–205. https://doi.org/10.1016/j.jep.2004.09.020

    Article  PubMed  Google Scholar 

  • Chen P, Sun JY, Xie NG, et al., 1995. Chemical constituents of daeycai (Selaginella doederleinii). Zhong Cao Yao, 26: 397–399 (in Chinese).

    CAS  Google Scholar 

  • Chen YH, Chang FR, Lin YJ, et al., 2007. Identification of phenolic antioxidants from Sword Brake fern (Pteris ensiformis Burm.). Food Chem, 105:48–56. https://doi.org/10.1016/j.foodchem.2007.03.055

    Article  CAS  Google Scholar 

  • Chiu CC, Chang HW, Chuang DW, et al., 2009. Fern plantderived protoapigenone leads to DNA damage, apoptosis, and G2/M arrest in lung cancer cell line H1299. DNA Cell Biol, 2810:501–506. https://doi.org/10.1089/dna.2009.0852

    Article  CAS  PubMed  Google Scholar 

  • Choi H, Song HS, Ukeda H, et al., 2000. Radical scavenging activities of citrus essential oils and their components: detection using 1,1-diphenyl-2 picrylhydrazyl. J Agric Food Chem, 48:4156–4161. https://doi.org/10.1021/jf000227d

    Article  CAS  PubMed  Google Scholar 

  • Chowdhary S, Verma DL, Pande R, et al., 2010. Antioxidative properties of flavonoids from Cheilanthes anceps Swartz. J Am Sci, 65:203–207.

    Google Scholar 

  • ChPC (Pharmacopoeia Commission of People’s Republic of China), 2005. Pharmacopoeia of People’s Republic of China (ChP). Chemical Industry Press, Beijing, China, p.49-50.

  • Cuenca-Estrella M, Mellado E, Diaz-Guerra TM, et al., 2000. Susceptibility of fluconazole-resistant clinical isolates of Candida sp. to echinocandin LY303366, intraconazole and amphotericin B. J Antimicrob Chemother, 463: 475–477. https://doi.org/10.1093/jac/46.3.475

    Article  CAS  PubMed  Google Scholar 

  • Cui CB, Tezuka Y, Kikuchi T, et al., 1990. Constituents of fern, Davallia mariesii Moore. I. Isolation and structures of Davallialactone and a new flavanone glucuronide. Chem Pharm Bull, 38:3218–3225. https://doi.org/10.1248/cpb.38.3218

    Article  CAS  PubMed  Google Scholar 

  • Dalli AK, Saha G, Chakraborty U, 2007. Chracterization of antimicrobial compounds from a common fern Pteris biaurita. Ind J Exp Biol, 45:285–290.

    CAS  Google Scholar 

  • Darokar MP, Mathur A, Dwivedi S, et al., 1998. Detection of antibacterial activity in the floral petals of some higher plants. Curr Sci, 753:187–189.

    Google Scholar 

  • Das K, 1997. Less known uses of plants among the aids of arunachal pradesh. Ethnobotany, 9:90–93.

    Google Scholar 

  • de Boer HJ, Kool A, Broberg A, et al., 2005. Anti-fungal and anti-bacterial activity of some herbal remedies from Tanzania. J Ethnopharmacol, 963:461–469. https://doi.org/10.1016/j.jep.2004.09.035

    Article  PubMed  Google Scholar 

  • de Britto AJ, Gracelin DHS, Kumar PBJR, 2012. Pteris biaurita L.: a potential antibacterial fern against Xanthomonas and Aeromonas bacteria. J Pharm Res, 51:678–680.

    Google Scholar 

  • de Feo V, 2003. Ethnomedical field study in northern Peruvian Andes with particular reference to divination practices. J Ethnopharmacol, 85:243–256. https://doi.org/10.1016/S0378-8741(03)00017-5

    Article  PubMed  Google Scholar 

  • Defilpps RA, Maina SL, Pray LA, 1988. The Palauan and Yap Medicinal Plant Studies of Masayoshi okabe. The National Museum of Natural History Smithsonian Institution, Washington DC, USA, p.1941-1943.

  • Delaporte RH, Sanchez GM, Cuellar AC, et al., 2002. Antiinflammatory activity and lipid peroxidation inhibition of iridoid lamiide isolated from Bouchea fluminensis (Vell.) Mold. (Verbenaceace). J Ethnopharmacol, 82(2-3):127–130. https://doi.org/10.1016/S0378-8741(02)00181-2

    Article  CAS  PubMed  Google Scholar 

  • Delong JM, Mark Hodges D, Prange RP, et al., 2011. The unique fatty acid and antioxidant composition of Ostrich fern (Matteuccia struthiopteris) fiddle heads. Can J Plant Sci, 915:919–930. https://doi.org/10.4141/cjps2010-042

    Article  CAS  Google Scholar 

  • Dhiman AK, 1998. Ethnomedicinal uses of some pteridophyitc species in India. Ind Fern J, 15(1-2):61–64.

    Google Scholar 

  • Ding ZT, Fang YS, Tai ZG, et al., 2008. Phenolic content and radical scavenging capacity of 31 species of ferns. Fitoterapia, 79:581–583. https://doi.org/10.1016/j.fitote.2008.01.011

    Article  CAS  PubMed  Google Scholar 

  • Dixit RD, 1992. Selaginella of India. Bishen Singh and Mahendra Pal Singh, Dehradun.

    Google Scholar 

  • Dixit RD, Vohra JN, 1984. A dictionary of the pteridophytes. Flora of India series-4, Botanical Survey of India, Howrah.

    Google Scholar 

  • Duh PD, Tu YY, Yen GC, 1999. Antioxidative activity of water extracts of Hamg jyur (Chrysanthemum morifolium). Lebnesmittel–Wissenschaft Technol, 325:269–277. https://doi.org/10.1006/fstl.1999.0548

    Article  CAS  Google Scholar 

  • Elda HC, Martha RMJ, Nuria ERG, et al., 2015. Phenolic composition of selected herbal infusions and their antiinflammatory effects on a colonic model in vitro in HT-29 cells. Cogent Food Agric, 1:1059033.

    Google Scholar 

  • Feng WS, Li KK, Zheng XK, 2011. A new norlignan lignanoside from Selaginella moellendorfii Hieron. Acta Pharmaceut Sin, 11:36–39. https://doi.org/10.1016/j.apsb.2011.04.001

    Article  CAS  Google Scholar 

  • Firdaus M, Prihanto AA, Nurdiani R, 2013. Antioxidant and cytotoxic activity of Acanthus ilicifolius flower. Asian Pac J Trop Biomed, 31:17–21. https://doi.org/10.1016/S2221-1691(13)60017-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fotsis T, Pepper MS, Aktas E, 1997. Flavonoids, dietaryderived inhibitors of cell proliferation and in vitro angiogenesis. Cancer Res, 57:2916–2921.

    CAS  PubMed  Google Scholar 

  • Francisco MS, Driver GC, 1984. Anti-microbial activity of phenolic acids in Pteridium aquilinum. Am Fern J, 743: 87–96. https://doi.org/10.2307/1546543

    Article  Google Scholar 

  • Fromtling RA, Rahway NJ, 1987. Recent trends in the discovery, development and evaluation of antifungal agents. In: Prous JR (Ed.), Proceedings of an International Tele Symposium. Barcelona.

    Google Scholar 

  • Gao LL, Yin SL, Li ZL, et al., 2007. Three novel sterols isolated from Selaginella tamariscina with antiproliferative activity in leukemia cells. Plant Med, 73:1112–1115. https://doi.org/10.1055/s-2007-981562

    Article  CAS  Google Scholar 

  • Garcia F, Pivel JP, Guerrero A, et al., 2006. Phenolic components and antioxidant activity of Fernblock, an aqueous extract of the aerial parts of the fern Polypodium leucotomos. Methods Find Exp Clin Pharmacol, 283: 157–160. https://doi.org/10.1358/mf.2006.28.3.985227

    Article  CAS  PubMed  Google Scholar 

  • Gayathri V, Asha V, Subromaniam A, 2005. Preliminary studies on the immunomodulatory and antioxidant properties of Selaginella species. Ind J Pharmacol, 376: 381–385. https://doi.org/10.4103/0253-7613.19075

    Article  Google Scholar 

  • Gearhart MO, 1994. Worsening of lung function with fluconazole and review of azole antifungal hepatotoxicity. Ann Pharm, 28:1177–1181.

    CAS  Google Scholar 

  • Geronikaki AA, Gavalas AM, 2006. Antioxidant and antiinflammatory disease: synthetic and natural antioxidants with anti-inflammatory activity. Comb Chem High Throughput Screen, 96:425–442. https://doi.org/10.2174/138620706777698481

    Article  CAS  PubMed  Google Scholar 

  • Giannasi DE, 1986. Phytochemical aspects of phylogeny in Hamamelidae. Ann Missouri Bot Gard, 732:417–437. https://doi.org/10.2307/2399120

    Article  Google Scholar 

  • Gillham B, Papachristodoulou DK, Thomas JH, 1997. Wills’ Biochemical Basis of Medicine, 3rd Ed. Butterworth-Heinemenn, Oxford, p.351.

    Google Scholar 

  • Gogoi R, 2002. Ethnobotanical studies of some ferns used by the Garo Tribals of Meghalaya. Adv Plant Sci, 152: 401–405.

    Google Scholar 

  • Gombau L, Garcia F, Lahoz A, et al., 2006. Polypodium leucotomos extract: antioxidant activity and disposition. Toxicol in vitro, 204:464–471. https://doi.org/10.1016/j.tiv.2005.09.008

    Article  CAS  PubMed  Google Scholar 

  • Gong XL, Chen ZH, Liang NC, 2007. Advances in study on chemical constituents and pharmacological activities of plants of genus Pteris. China J Chin Mater Med, 3214: 1382–1387.

    CAS  Google Scholar 

  • Govindappa M, Naga Sravya S, Poojashri MN, et al., 2011. Antimicrobial, antioxidant and in vitro anti-inflammatory activity of ethanol extract and active phytochemical screening of Wedelia trilobata (L.) Hitchc. J Pharmacogn Phytother, 33:43–51.

    Google Scholar 

  • Gracelin DHS, de Britto AJ, Kumar PBJR, 2012. Antibacterial screening of a few medicinal ferns against antibiotic resistant phyto pathogen. Int J Pharm Sci Res, 33:868–873.

    Google Scholar 

  • Grierson DS, Afolayan AJ, 1999. Antibacterial activity of some indigenous plants used for the treatment of wounds in the Eastern Cape, South Africa. J Ethnopharmacol, 661:103–106. https://doi.org/10.1016/S0378-8741(98)00202-5

    Article  CAS  PubMed  Google Scholar 

  • Grieve CM, Scora RW, 1980. Flavonoid distribution in the Aurantioideae (Rutaceae). Syst Bot, 51:39–53. https://doi.org/10.2307/2418734

    Article  Google Scholar 

  • Guha P, Mukhopadhyay R, Pal PK, et al., 2004. Antimicrobial activity of crude extracts and extracted phenols from gametophyte and sporophytic plant part of Adiantum capillus-veneris Linn. Allopathy J, 1:57–66.

    Google Scholar 

  • Guha P, Mukhopadhyay R, Gupta K, 2005. Antifungal activity of the crude extracts and extracted phenols from gametophytes and sporophytes of two species of Adiantum. Taiwania, 50:272–283.

    Google Scholar 

  • Guha S, Ghosal S, Chattopadhyay U, 1996. Antitumor, immunomodulatory and anti-HIV effects mangiferin, a naturally occurring glucosylxanthone. Chemotherapy, 426: 443–451. https://doi.org/10.1159/000239478

    Article  CAS  PubMed  Google Scholar 

  • Gupta SK, Ghosal M, Biswas R, et al., 2014. Evaluation of in vitro antioxidant activity of methanolic extracts of some ferns from Mawsynram of Meghalaya, India. Int J Curr Sci, 12:E87–E97.

    Google Scholar 

  • Gurib-Fakim A, 2006. Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Aspects Med, 271:1–93. https://doi.org/10.1016/j.mam.2005.07.008

    Article  CAS  PubMed  Google Scholar 

  • Gutteridge JM, 1995. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem, 41:1819–1828.

    CAS  PubMed  Google Scholar 

  • Hadi SM, Asad SF, Singh S, et al., 2000. Putative mechanism for anti-cancer and apoptosis-inducing properties of plant derived polyphenolic compounds. IUBMB Life, 503: 167–171. https://doi.org/10.1080/152165400300001471

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, 1996. Antioxidants in human health and disease. Ann Rev Nutr, 161:33–50. https://doi.org/10.1146/annurev.nu.16.070196.000341

    Article  CAS  Google Scholar 

  • Harada T, Saiki Y, 1955. Pharmaceutical studies on ferns. VIII. Distribution of flavonoids in ferns. Pharmaceut Bull, 36: 469–472. https://doi.org/10.1248/cpb1953.3.469

    Article  CAS  Google Scholar 

  • Haripriya D, Selvan N, Jeyakumar N, et al., 2010. The effect of extracts of Selaginella involvens and Selaginella inaequalifolia leaves on poultry pathogens. Asian Pac J Trop Med, 39:678–681. https://doi.org/10.1016/S1995-7645(10)60164-2

    Article  Google Scholar 

  • He J, Wu XD, Liu F, et al., 2014. Lycopodine-type alkaloids from Lycopodium japonicum. Nat Prod Bioprospect, 44: 213–219. https://doi.org/10.1007/s13659-014-0027-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirasawa Y, Morita H, Shiro M, et al., 2003. A novel tetracyclic alkaloid from Lycopodium sieboldii, inhibiting acetylcholinesterase. Org Lett, 521:3991–3993. https://doi.org/10.1021/ol035560s

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa Y, Kobayashi J, Morita H, 2006. Lycoperine A, a novel C72N3 type pentacyclic alkaloid from Lycopodium hamiltonii, inhibiting acetyl cholinesterase. Org Lett, 81: 3123–3126. https://doi.org/10.1021/ol052760q

    Article  CAS  Google Scholar 

  • Ho R, Teai T, Bianchini JP, et al., 2011. Ferns: from traditional uses to pharmaceutical development, chemical identification of active principles. In: Kumar A, Fernández H, Revilla M (Eds.), Working with Ferns: Issues and Applications. Springer Science Business Media, LLC, New York, p.321–346.

    Chapter  Google Scholar 

  • Hoang L, Tran H, 2014. in vitro antioxidant and anti-cancer properties of active compounds from methanolic extract of Pteris multifida Poir. Leaves. Eur J Med Plants, 43: 292–302. https://doi.org/10.9734/EJMP/2014/7053

    Article  Google Scholar 

  • Hort MA, Dalbo S, Brighente IMC, et al., 2008. Antioxidant and hepatoprotective effects of Cyathea phalerata Mart. (Cyatheaceae). Basic Clin Pharmacol Toxicol, 1031: 17–24. https://doi.org/10.1111/j.1742-7843.2008.00214.x

    Article  CAS  PubMed  Google Scholar 

  • Hu HB, Cao H, Jian YF, et al., 2008. Chemical constituents and antimicrobial activities of extracts from Pteris multifida. Chem Nat Comp, 441:106–108. https://doi.org/10.1007/s10600-008-0031-y

    Article  CAS  Google Scholar 

  • Hum H, Cao H, Jian Y, et al., 2008. Chemical constituents and antimicrobial activities of extracts from Pteris multifida. Chem Nat Comp, 441:106–108. https://doi.org/10.1007/s10600-008-0031-y

    Article  CAS  Google Scholar 

  • Husson GP, Vilaginds R, Delaveau P, 1986. Research into antiviral properties of a few natural extracts. Ann Pharm Franc, 44:41–48.

    CAS  PubMed  Google Scholar 

  • Islam M, 1983. Utilization of certain ferns and fern allies in the north-eastern region of India. J Econ Taxon Bot, 4:861–867.

    Google Scholar 

  • Jain SK, 1991. Dictionary of Indian Folk Medicine and Ethnobotany. Deep Publications, New Delhi.

    Google Scholar 

  • Jain SR, Sharma SN, 1967. Hypoglycaemic drugs of Indian indigenous origin. Plant Med, 154:439–442. https://doi.org/10.1055/s-0028-1100005

    Article  CAS  Google Scholar 

  • Jimenez MCA, Rojas Hernandez NM, Lopez Abraham AM, 1979. Biological evaluation of Cuban plants. IV. Rev Cubana Med Trop, 311:29–35.

    Google Scholar 

  • Joksic G, Stankovic M, Novak A, 2003. Antibacterial medicinal plants Equiseti herba and Ononidis radix modulate micronucleus formation in human lymphocytes in vitro. JEPTO, 22:41–48.

    PubMed  Google Scholar 

  • Jones RN, 1998. Important and emerging β-lactamasemediated resistance in hospital-based pathogens: the AMP C enzymes. Diag Microbiol Infect Dis, 313:461–466. https://doi.org/10.1016/S0732-8893(98)00029-7

    Article  CAS  Google Scholar 

  • Kang DG, Yin MH, Oh H, et al., 2004. Vasorelaxation by amentoflavone isolated from Selaginella tamariscina. Plant Med, 708:718–722. https://doi.org/10.1055/s-2004-827201

    Article  CAS  Google Scholar 

  • Kapadia GJ, Tokuda H, Konoshinma T, 1996. Anti-tumor promoting activity of Dryopteris Phlorophenone derivatives. Cancer Lett, 1052:161–165. https://doi.org/10.1016/0304-3835(96)04275-9

    Article  CAS  PubMed  Google Scholar 

  • Kathirvel A, Rai AK, Maurya GS, et al., 2014. Dryopteris cochleata rhizome: a nutritional source of essential elements, phytochemicals, antioxidants and antimicrobials. Int J Pharm Sci, 62:179–188.

    CAS  Google Scholar 

  • Katsube T, Imawaka N, Kawano Y, et al., 2006. Antioxidant flavonol glycosides in mulberry (Morus alba L.) leaves isolated based on LDL antioxidant activity. Food Chem, 971:25–31. https://doi.org/10.1016/j.foodchem.2005.03.019

    Article  CAS  Google Scholar 

  • Kaufman M, 2000. Lethal Mutation WHO Warns of Antibiotic Resistant Genes. The Week, Malayala Manorama Press, Kottayam, p.17–20.

    Google Scholar 

  • Kaur P, Kaur V, Kumar M, et al., 2014. Suppression of SOS response in Escherichia coli PQ37, antioxidant potential and antiproliferative action of methanolic extract of Pteris vittata L. on human MCF-7 breast cancer cells. Food Chem Toxicol, 74:326–333. https://doi.org/10.1016/j.fct.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  • Khan AM, Qureshi RA, Ullah R, et al., 2012. Flavonoids distribution in selected medicinal plants of Margalla hills and surroundings. Pak J Bot, 44:1241–1245.

    Google Scholar 

  • Kholia BS, Punetha NN, 2005. Useful pteriophytes of kumaon central Himalaya, India. Ind Fern J, 22:1–6.

    Google Scholar 

  • Kim HP, Son KH, Chang HW, et al., 2004. Anti-inflammatory plant flavonoids and cellular action mechanisms. J Pharmacol Sci, 96:229–245. https://doi.org/10.1254/jphs.CRJ04003X

    Article  CAS  PubMed  Google Scholar 

  • Kimura K, Noro Y, 1965. Pharmacognostical studies on Chinese drug “Gu-Sui-Bu”. I. Consideration on “Gu-Sui-Bu” in old herbals (pharmacognostical studies on fern drugs XI). Syoy akugaku Zasshi, 19:25–31.

    Google Scholar 

  • Koes R, Verweij W, Quattrocchio F, 2005. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Sci, 105:236–242. https://doi.org/10.1016/j.tplants.2005.03.002

    Article  CAS  Google Scholar 

  • Konoshima T, Takasaki M, Tokuda H, et al., 1996. Antitumor-promoting activities of triterpenoids from ferns. Biol Pharm Bull, 197:962–965. https://doi.org/10.1248/bpb.19.962

    Article  CAS  PubMed  Google Scholar 

  • Konrath EL, Nevesa BM, Passosa CS, et al., 2012. Henriques. Huperzia quadrifariata and Huperzia reflexa alkaloids inhibit acetylcholinesterase activity in vivo in mice brain. Phytomedicine, 1914:1321–1324. https://doi.org/10.1016/j.phymed.2012.08.009

    Article  CAS  PubMed  Google Scholar 

  • Kretovich VA, 1966. Principles of Plant Biochemistry. Moscow (in Russian).

    Google Scholar 

  • Kshirsagar R, Upadhyay S, 2009. Free radical scavenging activity screening of medicinal plants from Tripura, Northeast India. Nat Prod Rad, 82:117–122.

    Google Scholar 

  • Kumar RS, Sivakumar T, Sundaram RS, et al., 2006. Antimicrobial and antioxidant activities of Careya arborea Roxb. Stem Bark. Iran J Pharmacol Ther, 5:35–41.

    Google Scholar 

  • Kumar S, Pandey AK, 2013. Chemistry and biological activities of flavonoids: an overview. Sci World J, 2013: 162750.

    Google Scholar 

  • Kumar S, Sharma UK, Sharma AK, et al., 2012. Protective efficacy of Solanum xanthocarpum root extracts against free radical damage: phytochemical analysis and antioxidant effect. Cell Mol Biol, 58:174–181.

    CAS  PubMed  Google Scholar 

  • Kumar S, Gupta A, Pandey AK, 2013a. Calotropis procera root extract has capability to combat free radical mediated damage. ISRN Pharmacol, 2013:691372. https://doi.org/10.1155/2013/691372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Chashoo G, Saxena AK, et al., 2013b. Parthenium hysterophorus: a probable source of anti-cancer, antioxidant and anti-HIV agents. Biol Med Res Int, 2013: 810734.

    Google Scholar 

  • Kumudhavalli MV, Jaykar B, 2012. Pharmacological screening on leaves of the plant of Hemionitis arifolia (Burm.) T. Moore. Res J Pharm Biol Chem Sci, 32:79–83.

    Google Scholar 

  • Kweon MR, 1986. Thermostable Antithiamin Factor of Bracken Fern. MS Thesis, Seoul National University, Seoul, Korea.

    Google Scholar 

  • Lai HY, Lim YY, 2011. Antioxidant properties of some Malaysian ferns. The 3rd International Conference on Chemical, Biological and Environmental Engineering IPCBEE. Vol. 20, IACSIT Press, Singapore.

  • Lai HY, Lim YY, Kim KH, 2010. Blechnum orientale Linn.—a fern with potential as antioxidant, anti-cancer and antibacterial agent. BMC Complement Alternat Med, 1015:1–8.

    Google Scholar 

  • Lakshmi PA, Pullaiah T, 2006. Phytochemicals and antimicrobial studies of Adiantum incisum on gram positive, Gram negative bacteria and fungi. J Trop Med Plants, 7:275–278.

    Google Scholar 

  • Lakshmi PA, Kalavathi P, Pullaiah T, 2006. Phytochemical and antimicrobial studies of Adiantum latifolium. J Trop Med Plants, 7:17–22.

    Google Scholar 

  • Lazarova I, Zengin G, Aktumsek A, et al., 2014. HPLC-DAD analysis of phenolic compounds and antioxidant properties of Asphodeline lutea roots from Bulgaria and Turkey. Ind Crops Prod, 61:438–441. https://doi.org/10.1016/j.indcrop.2014.07.044

    Article  CAS  Google Scholar 

  • Lee H, Lin JY, 1988. Antimutagenic activity of extracts from anti-cancer drugs in Chinese medicine. Mutat Res, 2042: 229–234. https://doi.org/10.1016/0165-1218(88)90093-6

    Article  CAS  PubMed  Google Scholar 

  • Lee HB, Kim JC, Lee SM, 2009. Antibacterial activity of two phloroglucinols, flavaspidic acids AB and PB, from Dryopteris crassirhizoma. Arch Pharm Res, 32:655–659. https://doi.org/10.1007/s12272-009-1502-9

    Article  CAS  PubMed  Google Scholar 

  • Lee IS, Nishikawa A, Furukawa F, et al., 1999. Effects of Selaginella tamariscina on in vitro tumor cell growth, p53 expression, G1 arrest and in vivo gastric cell proliferation. Cancer Lett, 1441:93–99. https://doi.org/10.1016/S0304-3835(99)00188-3

    Article  CAS  PubMed  Google Scholar 

  • Lee JC, Lee KY, Kim J, et al., 2004. Extract from Rhus verniciflua stokes is capable of inhibiting the growth of human lymphoma cells. Food Chem Toxicol, 429: 1383–1388. https://doi.org/10.1016/j.fct.2004.03.012

    Article  CAS  PubMed  Google Scholar 

  • Lee JC, Lee KY, Son YO, et al., 2005. Plant-originated glycoprotein, G-120, inhibits the growth of MCF-7 cells and induces their apoptosis. Food Chem Toxicol, 436: 961–968. https://doi.org/10.1016/j.fct.2005.02.002

    Article  CAS  PubMed  Google Scholar 

  • Lee SM, Na MK, An RB, et al., 2003. Antioxidant activity of two phloroglucinol derivatives from Dryopteris crassirhizoma. Biol Pharm Bull, 269:1354–1356. https://doi.org/10.1248/bpb.26.1354

    Article  CAS  PubMed  Google Scholar 

  • Lewis DA, 1989. Anti-inflammatory Drugs from Plants and Marine Sources. Bikhauser Verlag, Basel, p.135.

    Google Scholar 

  • Li J, Lei X, Chen KL, 2014. Comparison of cytotoxic activities of extracts from Selaginella species. Pharmacog Mag, 1040:529–535. https://doi.org/10.4103/0973-1296.141794

    Article  Google Scholar 

  • Li JH, Liang NC, Mo LE, et al., 1998. Comparison of the cytotoxicity of five constituents from Pteris semipinnata L. in vitro and the analysis of their structure activity relationships. Acta Pharmaceut Sin, 339:641–644 (in Chinese).

    CAS  Google Scholar 

  • Li JH, He CW, Liang NC, et al., 1999. Effects of antitumor compounds isolated from Pteris semipinnata L. on DNA topoisomerases and cell cycle of HL-60 cells. Acta Pharmacol Sin, 206:541–545.

    CAS  Google Scholar 

  • Li S, Zhao M, Li Y, et al., 2014. Preparative isolation of six antitumour biflavonoids from Selaginella doederleinii Hieron by high-speed counter-current chromatography. Phytochem Anal, 252:127–133. https://doi.org/10.1002/pca.2478

    Article  CAS  PubMed  Google Scholar 

  • Li YF, Guo CJ, Yang JJ, et al., 2006. Evaluation of antioxidant properties of pomegranate pulp extract. Food Chem, 962:254–260. https://doi.org/10.1016/j.foodchem.2005.02.033

    Article  CAS  Google Scholar 

  • Liang YC, Huang YT, Tsau SH, et al., 1999. Suppression of inducible cyclo oxygenase and inducible nitric oxide synthase by apigenia and related flavonoid in mouse macrophages. Carcinogenesis, 2010:1945–1952. https://doi.org/10.1093/carcin/20.10.1945

    Article  CAS  PubMed  Google Scholar 

  • Lin LC, Kuo YC, Chou CJ, 2000. Cytotoxic biflavonoids from Selaginella delicatula. J Nat Prod, 635:627–630. https://doi.org/10.1021/np990538m

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Shi R, Wang X, et al., 2008. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Can Drug Targ, 87:634–646. https://doi.org/10.2174/156800908786241050

    Article  CAS  Google Scholar 

  • Liu B, Diaz F, Bohlin L, et al., 1998. Quantitative determination of anti-inflammatory principles in some Polypodium species as a basis for standardization. Phytomedicine, 53: 187–194. https://doi.org/10.1016/S0944-7113(98)80026-3

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Peng H, Ji Z, et al., 2011. Reactive oxygen speciesmediated mitochondrial dysfunction is involved in apoptosis in human nasopharyngeal carcinoma CNE cells induced by Selaginella doederleinii extract. J Ethnopharmacol, 1381:184–191. https://doi.org/10.1016/j.jep.2011.08.072

    Article  CAS  PubMed  Google Scholar 

  • Liu JS, Zhu YL, Yu CM, et al., 1986. The structures of huperzine A and B, two new alkaloids exhibiting marked anticholonesterase activity. Can J Chem, 644:837–839.

    Article  CAS  Google Scholar 

  • Liu Q, Qin M, 2002. Studies on chemical constituents of rhizomes of Pteris multifidi Poir. Chin Trad Herb Drugs, 332:114.

    Google Scholar 

  • Lopez-Lazaro M, 2009. Distribution and biological activities of the flavonoid luteolin. Mini-Rev Med Chem, 91:31–59. https://doi.org/10.2174/138955709787001712

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Xu J, Zhang LX, et al., 1999. Bioactive constituents from Pteris multifida. Plant Med, 656:586–587. https://doi.org/10.1055/s-2006-960835

    Article  CAS  Google Scholar 

  • Lucca DM, 1992. Flora Medicinal Boliviana: Dicccionario Enciclopedico. Editorial Los Amigos del Libro, Bolivia.

    Google Scholar 

  • Ma LY, Ma SC, Wei F, et al., 2003. Uncinoside A and B, two new antiviral chromone glycosides from Selaginella uncinata. Chem Pharm Bull, 5111:1264–1267. https://doi.org/10.1248/cpb.51.1264

    Article  CAS  PubMed  Google Scholar 

  • Ma SC, But PP, Ooi VE, et al., 2001. Antiviral amentoflavone from Selaginella sinensis. Biol Pharm Bull, 243: 311–312. https://doi.org/10.1248/bpb.24.311

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Gang DR, 2004. The Lycopodium alkaloids. Nat Prod Rep, 216:752–772. https://doi.org/10.1039/b409720n

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Tan C, Zhu D, et al., 2007. Huperzine a from huperzia species an ethnopharmacolgical review. J Ethnopharmacol, 1131:15–34. https://doi.org/10.1016/j.jep.2007.05.030

    Article  CAS  PubMed  Google Scholar 

  • Madhukiran P, Ganga Rao B, 2011. Anti-inflammatory activity of methanolic leaf extract of Cyathea gigantean (Wall. Ex Hook.). Int J Pharm Res Dev, 33:64–68.

    Google Scholar 

  • Manandhar PN, 1996. Ethnobotanical observations on ferns and fern allies of Nepal. J Econ Taxon Bot, 12:414–422.

    Google Scholar 

  • Maridass M, 2009. Antibacterial activity of Mecodium exsertum (Wall. Ex Hook) copel—a rare fern. Pharmacol Online, 1:1–7.

    Google Scholar 

  • Markham KR, 1988. Distribution of flavonoids in the lower plants and its evolutionary significance. In: Harborne JB (Ed.), The Flavonoids. Advances in Research since 1980. Chapman and Hall, London, p.427–468.

    Google Scholar 

  • Maruzzella JC, 1961. Antimicrobial substances from ferns. Nature, 1914787:518. https://doi.org/10.1038/191518a0

    Article  CAS  PubMed  Google Scholar 

  • May LW, 1978. The economic uses and associated folklore of ferns and fern allies. Bot Rev, 444:491–528. https://doi.org/10.1007/BF02860848

    Article  Google Scholar 

  • McCutcheon AR, Roberts TE, Gibbons E, et al., 1995. Antiviral screening of British Columbian medicinal plants. J Ethnopharmacol, 492:101–110. https://doi.org/10.1016/0378-8741(95)90037-3

    Article  CAS  PubMed  Google Scholar 

  • Miao N, Tao H, Tong C, et al., 1996. The Selaginella tamariscina (Beauv.) spring complex in the treatment of experimental diabetes and its effect on blood rheology. China J Chin Mater Med, 218:493–512.

    CAS  Google Scholar 

  • Michael SF, Gillian CD, 1984. Anti-microbial activity of phenolic acids in Pteridium aquilinium. Am Fern J, 743:87–96. https://doi.org/10.2307/1546543

    Article  Google Scholar 

  • Milan CM, Avijit D, Abdur R, et al., 2013. Evaluation of antioxidant, cytotoxic and antimicrobial properties of Drynaria quercifolia. Int Res J Pharm, 47:46–48. https://doi.org/10.7897/2230-8407.04710

    Article  CAS  Google Scholar 

  • Milovanovic V, Radulovic N, Todorovic Z, et al., 2007. Antioxidant, antimicrobial and genotoxicity screening of hydro-alcoholic extracts of five Serbian Equisetum species. Plant Foods Hum Nutr, 623:113–119. https://doi.org/10.1007/s11130-007-0050-z

    Article  PubMed  Google Scholar 

  • Mimica DN, Natasa S, Jelena C, et al., 2008. Phenolic compounds in field horsetail (Equisetum arvense L.) as natural antioxidants. Molecules, 137:1455–1464. https://doi.org/10.3390/molecules13071455

    Article  CAS  Google Scholar 

  • Mishra A, Sharma AK, Kumar S, et al., 2013a. Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant and anti-cancer activities. Biol Med Res Int, 2013:915436.

    Google Scholar 

  • Mishra A, Kumar S, Pandey AK, 2013b. Scientific validation of the medicinal efficacy of Tinospora cordifolia. Sci World J, 2013:292934. https://doi.org/10.1155/2013/292934

    Google Scholar 

  • Mitra N, 2012. Flavonoids in some Iranian angiosperms. In: Venketeshwer R (Ed.), Phytochemicals a Global Perspective of their Role in Nutrition and Health. INTECH, p.151–166.

    Google Scholar 

  • Mizushina Y, Watanabe I, Ohta K, et al., 1998. Studies on inhibitors of mammalian DNA polymerase A and B. Biochem Pharmacol, 554:537–541. https://doi.org/10.1016/S0006-2952(97)00536-4

    Article  CAS  PubMed  Google Scholar 

  • Murakami T, Machashi NT, 1985. Chemical and chemotaxonomical studies on filices. J Pharm Soc Japan, 1057: 640–648. https://doi.org/10.1248/yakushi1947.105.7_640

    Article  CAS  Google Scholar 

  • Neef H, Declercq P, Laekeman G, 1995. Hypoglycaemic activity of selected European plants. Phytother Res, 91: 45–48. https://doi.org/10.1002/ptr.2650090111

    Article  Google Scholar 

  • Newell AM, Yousef GG, Lila MA, et al., 2010. Comparative in vitro bioactivities of tea extracts from six species of Ardisia and their effects on growth inhibition of HepG2 cells. J Ethnopharmacol, 1303:536–544. https://doi.org/10.1016/j.jep.2010.05.051

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM, Snader KM, 2000. The influence of natural products upon drug discovery. Nat Prod Rep, 172:175–191. https://doi.org/10.1039/a809402k

    Article  Google Scholar 

  • Nguyen KH, 2005. Assessment of anti-diabetic effect of Vietnamese herbal drugs. Endrocrine and Diabetes Unit, Department of Moelcular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.

    Google Scholar 

  • Nonato FR, Barros TAA, Luchesse AM, et al., 2009. Antiinflammatory and antinociceptive activities of Blechnum occidentale L. extract. J Ethnopharmacol, 1251:102–107. https://doi.org/10.1016/j.jep.2009.06.005

    Article  PubMed  Google Scholar 

  • Noolu B, Gogulothu R, Bhat M, et al., 2016. in vivo inhibition of proteasome activity and tumour growth by Murraya koenigii leaf extract in breast cancer xenografts and by its active flavonoids in breast cancer cells. Anticancer Agents Med Chem, 1612:1605–1614. https://doi.org/10.2174/1871520616666160520112210

    Article  CAS  PubMed  Google Scholar 

  • Nwiloh BI, Monago CC, Uwakwe AA, 2014. Chemical composition of essential oil from the fiddleheads of Pteridium aquilinum L. Kuhn found in Ogoni. J Med Plants Res, 81:77–80. https://doi.org/10.5897/JMPR2013.5093

    Article  CAS  Google Scholar 

  • Nwosu MO, 2002. Ethnobotanical studies of some pteridophytes of Southern Nigeria. Econ Bot, 563:255–259. https://doi.org/10.1663/0013-0001(2002)056[0255:ESOSPO]2.0.CO;2

    Article  Google Scholar 

  • Oliveira VB, Zuchetto M, Oliveira CF, et al., 2016. Effects of different extraction techiques on the yield, antioxidant activity, total dosages, and profile by HPLC-DAD of Dicksonia sellowiana (Presl.). Hook, Dicksoniaceae. Rev Bras Plantas Med, 181:230–239. https://doi.org/10.1590/1983-084X/15_106

    Article  Google Scholar 

  • Oniga I, Toiu A, Mogosan C, et al., 2004. Preliminary investigations of Phyllitis scolopendria (L.) Newman (Polypodiaceae). Farmacia, 52:48–54.

    CAS  Google Scholar 

  • Otsuka H, Tsuki M, Toyosato T, et al., 1972. Anti-inflammatory activity of crude drugs and plants. Takeda Kenkynsho Ho, 31:238–246.

    CAS  Google Scholar 

  • Ouyang DW, Yang PM, Kong DY, 2008. Chemical constituents from Pteris multifida Poir. Chin J Pharm, 3912: 898–900.

    CAS  Google Scholar 

  • Pan PH, Lin SY, Ou YC, et al., 2010. Stearic acid attenuates cholestasis induced liver injury. Biochem Biophys Res Commun, 3913:1537–1542. https://doi.org/10.1016/j.bbrc.2009.12.119

    Article  CAS  PubMed  Google Scholar 

  • Pandurangan A, Khosa RL, Hemalatha S, 2008. Evaluation of anti-inflammatory and analgesic activity of root extract of Solanum trilobatum Linn. Iran J Pharm Res, 73: 217–221.

    Google Scholar 

  • Parekh J, Chanda S, 2006. Screening of some Indian medicinal plants for antibacterial activity. Ind J Pharm Sci, 686: 835–838. https://doi.org/10.4103/0250-474X.31032

    Article  Google Scholar 

  • Parekh J, Chanda S, 2007. Antibacterial and phytochemical studies on twelve species of Indian medicinal plants. Afr J Biomed Res, 10:175–181.

    Google Scholar 

  • Parihar P, Parihar L, Bohra A, 2006. Antibacterial activity of Athyrium pectinatum (Wall.) Presl. Nat Prod Rad, 54:262–265.

    Google Scholar 

  • Paul T, Das B, Apte KG, et al., 2012. Evaluation of antihyperglycemic activity of Adiantum Philippense Linn., a pteridophyte in alloxan induced diabetic rats. J Diabetes Metab, 39:1–8. https://doi.org/10.4172/2155-6156.1000226

    Article  CAS  Google Scholar 

  • Peres MTLP, Simionatto E, Hess SC, et al., 2009. Chemical and biological studies of Microgramma vacciniifolia (Langsd. & Fisch.) Copel (Polypodiaceae). Quim Nova, 324:897–901. https://doi.org/10.1590/S0100-40422009000400013

    Article  CAS  Google Scholar 

  • Pesewu GA, Cutler RR, Humber DP, 2008. Antibacterial activity of plants in traditional medicine of Ghana, with particular reference to MRSA. J Ethnopharmacol, 1161: 102–111. https://doi.org/10.1016/j.jep.2007.11.005

    Article  PubMed  Google Scholar 

  • Petard P, Raau T, 1972. The Use of Polynesia Medicinal Plants in Tahitian Medicine. Technical Paper No. 167. South Pacific Commission. Noumea, New Caledonia.

    Google Scholar 

  • Portillo A, Vila R, Freixa B, et al., 2001. Antifungal activity of Paraguayan plants used in traditional medicine. J Ethnopharmacol, 761:347–354. https://doi.org/10.1016/S0378-8741(01)00214-8

    Article  Google Scholar 

  • Prachayasittikul S, Buraparuangsang P, Worachartcheewan A, et al., 2008. Antimicrobial and antioxidant activity of bioreactive constituents from Hydnophytum formicarum Jack. Molecules, 134:904–921. https://doi.org/10.3390/molecules13040904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proestos C, Chorianopoulos N, Nychas GJ, et al., 2005. RP-HPLC analysis of the phenolic compounds of plant extracts. Investigation of their antioxidant capacity and antimicrobial activity. J Agric Food Chem, 534:1190–1195. https://doi.org/10.1021/jf040083t

    Article  CAS  PubMed  Google Scholar 

  • Punzon C, Alcaide A, Fresno M, 2003. in vitro anti-inflammatory activity of Phlebodium decumanum. Modulation of tumor necrosis factor and soluble TNF receptors. Int Immonopharmacol, 39:1293–1299. https://doi.org/10.1016/S1567-5769(03)00117-6

    Article  CAS  Google Scholar 

  • Qin B, Zhu D, Jiang S, et al., 2006. Chemical constituents of Pteris multifida and their inhibitory effects on growth of rat prostatic epithelial cells in vitro. Chin J Nat Med, 46:428–431.

    CAS  Google Scholar 

  • Quisumbing E, 1951. Medicinal plants of the philippines. Technical Bulletin 16, Department of Agriculture and Natural Resources, Republic of Philippines, Manila.

    Google Scholar 

  • Radulovic N, Stojanovic G, Palic R, 2006. Composition and antimicrobial activity of Equisetum arvense L. essential oil. Phytother Res, 201:85–88. https://doi.org/10.1002/ptr.1815

    Article  CAS  PubMed  Google Scholar 

  • Raja DP, Manickam VS, de Britto AJ, et al., 1995. Chemical and chemotaxonomical studies on Dicranopteris species. Chem Pharm Bull, 4310:1800–1803. https://doi.org/10.1248/cpb.43.1800

    Article  CAS  PubMed  Google Scholar 

  • Rattmann YD, Mendez-Sanchez SC, Furian AF, et al., 2011. Standardized extract of Dicksonia sellowiana Presl. Hook (Dicksoniaceae) decreses oxidative damage in cultured endothelial cells and in rats. J Ethnopharmacol, 1333: 999–1007. https://doi.org/10.1016/j.jep.2010.11.030

    Article  PubMed  Google Scholar 

  • Reddy VL, Ravikanth V, Rao TP, et al., 2001. A new triterpenoid from the fern Adiantum lunulatum and evaluation of antibacterial activity. Phytochemistry, 562:173–175. https://doi.org/10.1016/S0031-9422(00)00334-4

    Article  CAS  PubMed  Google Scholar 

  • Ripa FA, Nahar L, Haque M, et al., 2009. Antibacterial, cytotoxic and antioxidant activity of crude extract of Marsilea quadrifolia. Europ J Sci Res, 331:123–129.

    Google Scholar 

  • Rocha L, Marston A, Potterat O, et al., 1995. Antibacterial phloroglucinols and flavonoid from Hypericum brasiliense. Phytochemistry, 405:1447–1452. https://doi.org/10.1016/0031-9422(95)00507-4

    Article  CAS  PubMed  Google Scholar 

  • Rojas A, Bah M, Rojas JI, et al., 1999. Spasmolytic activity of some plants used by the Otomi Indians of Queretaro (Mexico) for the treatment of gastrointestinal disorders. Phytomedicine, 65:367–371. https://doi.org/10.1016/S0944-7113(99)80061-0

    Article  CAS  PubMed  Google Scholar 

  • Rout SD, Panda T, Mishra N, 2009. Ethnomedicinal studies on some pteridophytes of Similipal Biosphere Reserve, Orissa, India. Int J Med Medical Sci, 15:192–197.

    Google Scholar 

  • Salatino A, Salatino MLF, Yara D, et al., 2000. Distribution and evolution of secondary metabolites in Eriocaulaceae, Lythraceae and Velloziaceae from “campos rupestres”. Genet Molecul Biol, 234:931–940. https://doi.org/10.1590/S1415-47572000000400038

    Article  CAS  Google Scholar 

  • Salatino MLF, Prado J, 1998. Flavonoid glycosides of Pteridaceae from Brazil. Biochem Syst Ecol, 267:761–769. https://doi.org/10.1016/S0305-1978(98)00032-5

    Article  CAS  Google Scholar 

  • Samant SS, Dhar U, Palni LMS, 1998. Medicinal Plants of Indian Himalaya: Diversity Distribution Potential Values. Gyanodaya Prakashan, Nainital, p.163.

    Google Scholar 

  • Santhosh KS, Samydurai P, Nagarajan N, 2014. Indigenous knowledge on some medicinal pteridophytic plant species among the Malasar tribe’s in Valparai Hills, Western Ghats of Tamil Nadu. Am J Ethnomed, 13:164–173.

    Google Scholar 

  • Sarker MAQ, Mondol PC, Alam MJ, et al., 2011. Comparative study on antitumor activity of three pteridophytes ethanol extracts. Int J Agric Tech, 76:1661–1671.

    Google Scholar 

  • Sathiyaraj G, Muthukumar T, Ravindran KC, 2015. Ethnomedicinal importance of fern and fern allies traditionally used by tribal people of Palani Hills (Kodaikanal), Western Ghats, South India. J Med Herbs Ethnomed, 11: 4–9. https://doi.org/10.5455/jmhe.2015-07-08

    Article  Google Scholar 

  • Sengupta S, Das AK, Ghosh SN, 2002. Biocidal activity of some plant extracts. J Hill Res, 152:99–101.

    Google Scholar 

  • Sharma NK, 2002. Ethnomedicinal studies of ferns and fern allies of Hadoti plateau, South Eastern Rajasthan. Zoos Print J, 173:732–734. https://doi.org/10.11609/JoTT.ZPJ.17.3.732-4

    Article  Google Scholar 

  • Shen YC, Chen CH, 1994. Alkaloids from Lycopodium casuarinoides. J Nat Prod, 576:824–826. https://doi.org/10.1021/np50108a021

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Zhou H, Zhang Y, et al., 2008. Hyphenated HSCCCDPPH for rapid preparative isolation and screening of antioxidants from Selaginella moellendorffii. Chromatographia, 68(3-4):173–178. https://doi.org/10.1365/s10337-008-0716-1

    Article  CAS  Google Scholar 

  • Shin SL, 2010. Functional Components and Biological Activities of Pteridophytes as Healthy Biomaterials. PhD Thesis, Chungbuk National University, Cheongju, Korea.

    Google Scholar 

  • Shin SL, Lee CH, 2010. Antioxidant effects of the methanol extracts obtained from aerial part and rhizomes of ferns native to Korea. Korean J Plant Res, 231:38–46.

    Google Scholar 

  • Shu JC, Liu JQ, Zhong YQ, et al., 2012. Two new pterosin sesquiterpenes from Pteris multifida Poir. Phytochem Lett, 52:276–279. https://doi.org/10.1016/j.phytol.2012.01.011

    Article  CAS  Google Scholar 

  • Shukla S, Gupta S, 2009. Apigenin suppresses insulin-like growth factor I receptor signalling in human prostate cancer: an in vitro and in vivo study. Mol Carcinogen, 483:243–252. https://doi.org/10.1002/mc.20475

    Article  CAS  Google Scholar 

  • Shyur LF, Tsung JH, Chen JH, et al., 2005. Antioxidant properties of extracts from medicinal plants popularly used in Taiwan. Int J Appl Sci Eng, 33:195–202.

    Google Scholar 

  • Silva GL, Chai H, Gupta MP, et al., 1995. Cytotoxic biflavonoids from Selaginella willdenowii. Phytochemistry, 401:129–134. https://doi.org/10.1016/0031-9422(95)00212-P

    Article  CAS  PubMed  Google Scholar 

  • Singh BP, Upadhyay R, 2012. Ethno-botanical importance of Pteridophytes used by the tribe of Pachmarhi, Central India. J Med Plants Res, 61:14–18.

    Google Scholar 

  • Singh HB, 1999. Potential medicinal pteridophytes of India and their chemical constituents. J Econ Tax Bot, 231: 63–78.

    Google Scholar 

  • Singh HB, Singh MK, 2010. Huperzia serrata: a promising medicinal pteridophyte from Northeast. India NEBIO, 11:27–34.

    Google Scholar 

  • Singh L, Singh S, Singh K, et al., 2001. Ethnobotanical uses of some pteridophytic species in Manipur. Ind Fern J, 18(1-2):14–17.

    Google Scholar 

  • Singh M, Singh N, Khare PB, et al., 2008a. Antimicrobial activity of some important Adiantum species used traditionally in indigenous systems of medicine. J Ethnopharmacol, 1152:327–329. https://doi.org/10.1016/j.jep.2007.09.018

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Govindarajan R, Rawat AKS, et al., 2008b. Antimicrobial flavonoid rutin from Pteris vittata L. against pathogenic gastrointestinal microflora. Am Fern J, 982: 98–103. https://doi.org/10.1640/0002-8444(2008)98[98:AFRFPV]2.0.CO;2

    Article  Google Scholar 

  • Singh VP, 1973. Some medicinal ferns of Sikkim Himalayas. J Res Indian Med, 8:71–73.

    Google Scholar 

  • Soare LC, Ferdes M, Stefanov S, et al., 2012a. Antioxidant activity, polyphenols content and antimicrobial activity of several native pteridophytes of Romania. Not Bot Hort Agrobo, 401:53–57.

    Article  CAS  Google Scholar 

  • Soare LC, Ferdes M, Deliu I, et al., 2012b. Studies regarding the antibacterial activity of some extracts of native pteridophytes. UPB Sci Bull Ser B, 741:21–26.

    Google Scholar 

  • Staerk D, Larsen J, Larsen LA, et al., 2004. Selagoline, a new alkaloid from Huperzia selago. Nat Prod Res, 183: 197–203. https://doi.org/10.1080/14786410310001620600

    Article  CAS  PubMed  Google Scholar 

  • Stafford HA, 1991. Flavonoid evolution: an enzyme approach. Plant Physiol, 963:680–685. https://doi.org/10.1104/pp.96.3.680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Star AE, Mabry TJ, 1971. Flavonoid frond exudates from 2 Jamaican ferns Pityrogramma tartarea and Pityrogramma calmoelanos. Phytochemistry, 1011:2817–2818. https://doi.org/10.1016/S0031-9422(00)97288-1

    Article  CAS  Google Scholar 

  • Su Y, Sun CM, Chuang HH, et al., 2000. Studies on the cytotoxic mechanisms of ginkgetin in a human ovarian adenocarcinoma cell line. Naunyn Schmiedebergs Arch Pharmacol, 3621:82–90. https://doi.org/10.1007/s002100000240

    Article  CAS  PubMed  Google Scholar 

  • Subhashini P, Dilipan E, Thangaradjou T, et al., 2013. Bioactive natural products from marine angiosperms: abundance and functions. Nat Prod Bioprospect, 34:129–136. https://doi.org/10.1007/s13659-013-0043-6

    Article  CAS  PubMed Central  Google Scholar 

  • Sukumaran K, Kuttan R, 1991. Screening of 11 ferns for cytotoxic and antitumor potential with special reference to Pityrogramma calomelanos. J Ethnopharmacol, 341: 93–96. https://doi.org/10.1016/0378-8741(91)90194-I

    Article  CAS  PubMed  Google Scholar 

  • Sultana S, Nandi JK, Rahman S, et al., 2014. Preliminary antihyperglycemic and analgesic activity studies with Angiopteris evecta leaves in Swiss Albino mice. World J Pharm Pharm Sci, 310:1–12.

    Google Scholar 

  • Sun CM, Syu WJ, Huang YT, et al., 1997. Selective cytotoxicity of ginkgetin from Selaginella moellendorffii. J Nat Prod, 604:382–384. https://doi.org/10.1021/np960608e

    Article  CAS  PubMed  Google Scholar 

  • Sylvestre M, Pichetle A, Longtin A, et al., 2006. Essential oil analysis and anti-cancer activity of leaf essential oil of Croton flavens L. from Guadeloupe. J Ethnopharmacol, 1031:99–102. https://doi.org/10.1016/j.jep.2005.07.011

    Article  CAS  PubMed  Google Scholar 

  • Tan WJ, Xu JC, Li L, et al., 2009. Bioactive compounds of inhibiting xanthine oxidase from Selaginella labordei. Nat Prod Res, 234:393–398. https://doi.org/10.1080/14786410802228736

    Article  CAS  PubMed  Google Scholar 

  • Tanzin R, Rahman S, Hossain MS, et al., 2013. Medicinal potential of pteridophytes—an antihyperglycemic and antinociceptive activity evaluation of methanolic extract of whole plants of Christella dentate. Adv Nat Appl Sci, 71:67–73.

    Google Scholar 

  • Taylor L, 2003. Herbal Secrets of the Rainforest, 2nd Ed., Sage Press.

    Google Scholar 

  • Taylor RS, Manandhar NP, Hudson JB, et al., 1996. Antiviral activities of Nepalese medicinal plants. J Ethnopharmacol, 523:157–163. https://doi.org/10.1016/0378-8741(96)01409-2

    Article  CAS  PubMed  Google Scholar 

  • Tomsik P, 2013. Ferns and lycopods a potential treasury of anti-cancer agents but also a carcinogenic hazard. Phyto Res, 286:798–810. https://doi.org/10.1002/ptr.5070

    Article  CAS  Google Scholar 

  • Tsai HH, Hwang SM, 1999. Compositions of Matter Useful in the Treatment of Viral Infections Derived from Plant Extracts. US Patent 5989556.

    Google Scholar 

  • Twentyman PR, Fox NE, Rees JK, 1989. Chemosensitivity testing of fresh leukaemia cells using the MTT colorimetric assay. Br J Haematol, 711:19–24. https://doi.org/10.1111/j.1365-2141.1989.tb06268.x

    Article  CAS  PubMed  Google Scholar 

  • Uddin MG, Mirza MM, Pasha MK, 1998. The medicinal uses of pteridophytes of Bangladesh. Bangladesh J Plant Taxon, 52:29–41.

    Google Scholar 

  • Uma R, Pravin B, 2013. in vitro cytotoxic activity of Marsilea quadrifolia Linn. of MCF-7 cells of human breast cancer. Int Res J Med Sci, 11:10–13.

    Google Scholar 

  • Upreti K, Jalal JS, Tewari LM, et al., 2009. Ethnomedicinal uses of pteridophytes of Kumaun Himalaya, Uttarakhand, India. J Am Sci, 5:167–170.

    Google Scholar 

  • Vaghasiya Y, Nair R, Baluja S, et al., 2008. Antibacterial and preliminary phytochemical analysis of Eucalyptus citriodora Hk. Leaf. Nat Prod Res, 229:754–762. https://doi.org/10.1080/14786410701628788

    Article  CAS  PubMed  Google Scholar 

  • Vasudeva SM, 1999. Economic importance of pteridophytes. Ind Fern J, 16(1-2):130–152.

    Google Scholar 

  • Verma PK, Singh KK, 1995. Traditional phytotheraphy among the Baiga tribe of Shadol district of Madhya Pradesh, India. Ethnobotany, 7:69–73.

    Google Scholar 

  • Vijayalakshmi A, Ravichandiran V, Malarkodi V, et al., 2011. Anti-anaphylactic and anti-inflammatory activities of a bioactive alkaloid from the root bark of Plumeria acutifolia Poir. Asian Pac J Trop Biomed, 15:401–405. https://doi.org/10.1016/S2221-1691(11)60088-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vimala TA, Johnson M, Solomon J, 2012. Anti-bacterial studies on Hemigraphis colorata (Blume) H.G. Hallier and Elephantopus scaber L. Asian Pacific J Trop Med, 51:52–57. https://doi.org/10.1016/S1995-7645(11)60245-9

    Article  Google Scholar 

  • Viral D, Shivanand P, Jivani NP, 2011. Anti-cancer evaluation of Adiantum venustum Don. J Young Pharm, 31:48–54. https://doi.org/10.4103/0975-1483.76419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vonkeman HE, van de Laar MAFJ, 2010. Nonsteroidal antiinflammatory drugs: adverse effects and their prevention. Semin Arthritis Rheum, 394:294–312. https://doi.org/10.1016/j.semarthrit.2008.08.001

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Zhang LM, 2008. Study of the extract from Pteris multifida Poir. on antitumor activity. Hebeisheng Kexueyuan Xuebao, 25:52–54 (in Chinese).

    CAS  Google Scholar 

  • Wang HB, Wong MH, Lan CY, et al., 2010. Effect of arsenic on flavonoid contents in Pteris species. Biochem Syst Ecol, 384:529–537. https://doi.org/10.1016/j.bse.2010.05.009

    Article  CAS  Google Scholar 

  • Wang S, Mecklink KA, Marcone MF, et al., 2011. Can phytochemical antioxidant rich foods act as anti-cancer agents? Food Res Int, 44:2545–2554. https://doi.org/10.1016/j.foodres.2011.05.021

    Article  CAS  Google Scholar 

  • Wang TC, Lee HI, Yang CC, 2009a. Evaluation of in vitro antioxidant and antilipid peroxidation activities of Ching-Pien-Tsao (Pteris multifida Poiret). J Taiwan Agric Res, 581:55–60.

    Google Scholar 

  • Wang YH, Long CL, Yang FM, et al., 2009b. Pyrrolidinoindoline alkaloids from Selaginella moellendorfii. J Nat Prod, 726:1151–1154. https://doi.org/10.1021/np9001515

    Article  CAS  PubMed  Google Scholar 

  • Way TD, Kao MC, Lin JK, 2004. Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway. J Biol Chem, 2796:4479–4489. https://doi.org/10.1074/jbc.M305529200

    Article  CAS  PubMed  Google Scholar 

  • Wei HA, Lian TW, Tu YC, et al., 2007. Inhibition of lowdensity lipoprotein oxidation and oxidative burst in polymorphonuclear neutrophils by caffeic acid and hispidin derivatives isolated from sword brake fern (Pteris ensiformis Burm.). J Agric Food Chem, 5526:10579–10584. https://doi.org/10.1021/jf071173b

    Article  CAS  PubMed  Google Scholar 

  • Whistler WA, 1992. Polynesian Herbal Medicine. National Tropical Botanical Garden, Hawaii.

    Google Scholar 

  • Widen CJ, 1971. Chemotaxonomic investigations of Dryopteris fragrans. Can J Bot, 496:989–992. https://doi.org/10.1139/b71-138

    Article  CAS  Google Scholar 

  • Widen CJ, Britton DM, 1971a. A chromatographic study of Dryopteris dilatata in North Americans eastern Asia. Can J Bot, 492:247–258. https://doi.org/10.1139/b71-041

    Article  Google Scholar 

  • Widen CJ, Britton DM, 1971b. A chromatographic and cytological study of Dryopteris filix-mas and related taxa in North America. Can J Bot, 499:1589–1600. https://doi.org/10.1139/b71-222

    Article  Google Scholar 

  • Winrow VR, Winyard PG, Morris CJ, et al., 1993. Free radicals in inflammation: second messengers and mediators of tissue destruction. British Med Bull, 493:506–522. https://doi.org/10.1093/oxfordjournals.bmb.a072627

    Article  CAS  Google Scholar 

  • Woerdenbag HJ, Lutke LR, Bos R, et al., 1996. Isolation of two cytotoxic diterpenes from the fern Pteris multifida. Z Naturforsch, 51(9-10):635–638.

    Article  CAS  Google Scholar 

  • Woo ER, Lee JY, Cho IJ, et al., 2005. Amentoflavone inhibits the induction of nitric oxide synthase by inhibiting NF-?B activation in macrophages. Pharm Res, 516:539–546. https://doi.org/10.1016/j.phrs.2005.02.002

    Article  CAS  Google Scholar 

  • Wu MJ, Weng CY, Wang L, et al., 2005. Immunomodulatory mechanism of the aqueous extract of sword brake fern (Pteris ensiformis Burm.). J Ethnopharmacol, 98(1-2): 73–81. https://doi.org/10.1016/j.jep.2004.12.031

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Yang XW, Yang SH, et al., 2007. Chemical constituents of Cibotium barometz. Nat Prod Res Dev, 19: 240–243.

    CAS  Google Scholar 

  • Wynne GM, Mander LN, Oyama N, et al., 1998. An antheridiogen, 13-hydroxy-GA73 methyl ester (GA109) from the fern Lygodium circinnatum. Phytochemisty, 477:1177–1182. https://doi.org/10.1016/S0031-9422(97)00714-0

    Article  CAS  Google Scholar 

  • Xia X, Cao J, Zheng Y, et al., 2014. Flavonoid concentrations and bioactivity of flavonoid extracts from 19 species of ferns from China. Ind Crops Prod, 58:91–98. https://doi.org/10.1016/j.indcrop.2014.04.005

    Article  CAS  Google Scholar 

  • Xu HX, Kadota S, Kurokawa M, et al., 1993. Isolation and structure of woodorien, a new glucoside having antiviral activity from Woodwardia orientalis. Chem Pharm Bull, 4110:1803–1806. https://doi.org/10.1248/cpb.41.1803

    Article  CAS  PubMed  Google Scholar 

  • Xu JX, Wang YL, Wang JJ, et al., 2012. Chemical constituents of Cibotium barometz and their bioactivities: a review. Nat Prod Res Dev, 24(S1):134–140.

    Google Scholar 

  • Yang DY, 2005. Gu Sui Bu a good drug for senile dementia. J Trad Chin Med, 254:290–291.

    CAS  Google Scholar 

  • Yang L, Ye CY, Huang XT, et al., 2012. Decreased accumulation of subcellular amyloid-β with improved mitochondrial function mediates the neuroprotective effect of huperzine A. J Alzheimers Dis, 31:131–142.

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Liu M, Liang N, et al., 2013. Discovery and antitumor activities of constituents from Cyrtomium fortunei (J.) Smith rhizomes. Chem Central J, 724:1–10.

    Google Scholar 

  • Yilmaz Y, Toledo RT, 2004. Major flavonoids in grape seeds and skins: antioxidant capacity of catechin, epicatechin, and gallic acid. J Agric Food Chem, 522:255–260. https://doi.org/10.1021/jf030117h

    Article  CAS  PubMed  Google Scholar 

  • Yonathan M, Asres K, Assefa A, et al., 2006. in vivo antiinflammatory and anti-nociceptive activities of Cheilanthes farinose. J Ethnopharmacol, 1083:462–470. https://doi.org/10.1016/j.jep.2006.06.006

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Konishi M, Horinaka M, et al., 2008. Kaempferol sensitizes colon cancer cells to TRAIL-induced apoptosis. Biochem Biophys Res Commun, 3751:129–133. https://doi.org/10.1016/j.bbrc.2008.07.131

    Article  CAS  PubMed  Google Scholar 

  • Zakaria ZA, Fasya ZD, Ghani A, et al., 2008. Antinociceptive, anti-inflammatory, and antipyretic properties of an aqueous extract of Dicranopteris linearis leaves in experimental animal models. J Nat Med, 622:179–187. https://doi.org/10.1007/s11418-007-0224-x

    Article  CAS  PubMed  Google Scholar 

  • Zakaria ZA, Mohamed AM, Jamil NSM, et al., 2011. in vitro cytotoxic and antioxidant properties of the aqueous, chloroform and methanol extracts of Dicranopteris linearis leaves. Afr J Biotechnol, 102:273–282.

    Google Scholar 

  • Zangara A, 2003. The psychopharmacology of huperzine A: an alkaloid with cognitiveenhancing and neuroprotective properties of interest in the treatment of Alzheimer’s disease. Pharmacol Biochem Behav, 753:675–686. https://doi.org/10.1016/S0091-3057(03)00111-4

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wei H, Liu Z, et al., 2013. A novel protoapigenone analog RY10-4 induces breast cancer MCF-7 cell death through autophagy via the Akt/mTOR pathway. Toxicol Appl Pharmacol, 2702:122–128. https://doi.org/10.1016/j.taap.2013.04.011

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, ElSohly HN, Jacob MR, et al., 2002. Natural products inhibiting Candida albicans secreted aspartic proteases from Lycopodium cernuum. J Nat Prod, 657: 979–985. https://doi.org/10.1021/np0200616

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Jin J, Ruan J, et al., 2007. Antioxidant flavonoid glycosides from aerial parts of the fern Abacopteris penangiana. J Nat Prod, 7010:1683–1686. https://doi.org/10.1021/np0703850

    Article  CAS  PubMed  Google Scholar 

  • Zhao ZX, Jin J, Ruan JL, et al., 2007. Antioxidant flavonoid glycosides from aerial parts of the fern Abacopteris penangiana. J Nat Prod, 7010:1683–1686. https://doi.org/10.1021/np0703850

    Article  CAS  PubMed  Google Scholar 

  • Zheng M, 1990. Experimental study of 472 herbs with antiviral action against the herpes simplex virus. Chin J Mod Dev Tradit Med, 101:39–41 (in Chinese).

    CAS  Google Scholar 

  • Zheng XK, Bi YF, Feng WS, et al., 2004. Study on chemical constituents of Selaginella tamariscina (Beauv.) Spring. Acta Pharmaceut Sin, 394:266–268 (in Chinese).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-bo Liao.

Additional information

The two authors contributed equally to this work

Project supported by the Science and Technology Project for Fundamental Research of Shenzhen (No. JCYJ20140905095624296) and the Basic Work Special Project of the Ministry of Science and Technology of China (No. 2013FY111500)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baskaran, Xr., Geo Vigila, Av., Zhang, Sz. et al. A review of the use of pteridophytes for treating human ailments. J. Zhejiang Univ. Sci. B 19, 85–119 (2018). https://doi.org/10.1631/jzus.B1600344

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1600344

Keywords

关键词

Navigation