Skip to main content
Log in

Endophytes from medicinal plants and their potential for producing indole acetic acid, improving seed germination and mitigating oxidative stress

药用植物内生菌对作物生长及氧化应激的作用

  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Medicinal plants have been used by marginal communities to treat various ailments. However, the potential of endophytes within these bio-prospective medicinal plants remains unknown. The present study elucidates the endophytic diversity of medicinal plants (Caralluma acutangula, Rhazya stricta, and Moringa peregrina) and the endophyte role in seed growth and oxidative stress. Various organs of medicinal plants yielded ten endophytes, which were identified as Phoma sp. (6 isolates), Alternaria sp. (2), Bipolaris sp. (1), and Cladosporium sp. (1) based on 18S rDNA sequencing and phylogenetic analysis. The culture filtrates (CFs; 25%, 50%, and 100% concentrations) from these endophytes were tested against the growth of normal and dwarf mutant rice lines. Endophytic CF exhibited dose-dependent growth stimulation and suppression effects. CF (100%) of Phoma sp. significantly increased rice seed germination and growth compared to controls and other endophytes. This growth-promoting effect was due to the presence of indole acetic acid in endophytic CF. The gas chromatography/mass spectrometry (GC/MS) analysis showed the highest indole acetic acid content ((54.31±0.21) μmol/L) in Bipolaris sp. In addition, the isolate of Bipolaris sp. exhibited significantly higher radical scavenging and anti-lipid peroxidation activity than the other isolates. Bipolaris sp. and Phoma sp. also exhibited significantly higher flavonoid and phenolic contents. The medicinal plants exhibited the presence of bio-prospective endophytic strains, which could be used for the improvement of crop growth and the mitigation of oxidative stresses.

摘要

目的

探讨药用植物内生菌的多样性及其在种子生长和氧化应激中的作用。

方法

从三种药用植物(Caralluma acutangula、Rhazya strictaMoringa peregrina)中提取内生菌;基 于18S rDNA 测序和系统发育分析鉴定分离得到 的内生菌株;以正常和矮化突变体水稻品系为对 照,比较不同浓度的内生菌培养滤液(CF)对水 稻种子的发芽和生长的影响;通过气相色谱-质谱 分析CF 中的有效活性成分。

结论

从药用植物中共获得10 种内生菌,包括茎点霉 属6 株、链格孢属2 株、双极霉属1 株和枝孢霉 属1 株。CF 表现出剂量依赖性的生长刺激和抑制 作用。与对照和其他内生菌相比,100%的茎点霉 菌CF 显著促进了水稻种子的发芽和生长;双极 霉中的吲哚乙酸含量最高,并表现出比其更高的 自由基清除和抗脂质过氧化活性;双极霉菌和茎 点霉菌的类黄酮和酚类成分较高。综上所述,药 用植物中存在内生菌株,其可以用于改善作物生 长和减轻氧化应激。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ansari, M.W., Trivedi, D.K., Sahoo, R.K., et al., 2013. A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops. Plant Physiol. Biochem., 70:403–410. http://dx.doi.org/10.1016/j.plaphy.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  • Arnold, A.E., Lutzoni, F., 2007. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology, 88(3):541–549. http://dx.doi.org/10.1890/05-1459

    Article  PubMed  Google Scholar 

  • Bajpai, V.K., Agrawal, P., Park, Y.H., 2014, Phytochemicals, antioxidant and anti-lipid peroxidation activities of ethanolic extract of a medicinal plant, Andrographis paniculata. J. Food Biochem., 38(6):584–591. http://dx.doi.org/10.1111/jfbc.12092

    Article  CAS  Google Scholar 

  • Chen, J., Hu, K.X., Hou, X.Q., et al., 2011. Endophytic fungi assemblages from 10 Dendrobium medicinal plants (Orchidaceae). World J. Microbiol. Biotechnol., 27(5):1009–1016. http://dx.doi.org/10.1007/s11274-010-0544-y

    Article  Google Scholar 

  • Chutima, R., Lumyong, S., 2012. Production of indole-3-acetic acid by Thai native orchid-associated fungi. Symbiosis, 56(1):35–44. http://dx.doi.org/10.1007/s13199-012-0158-2

    Article  CAS  Google Scholar 

  • de Hoog, G.S., Horre, R., 2002. Molecular taxonomy of the Alternaria and Ulocladium species from humans and their identification in the routine laboratory. Mycoses, 45(7-8): 259–276. http://dx.doi.org/10.1046/j.1439-0507.2002.00747.x

    Article  PubMed  Google Scholar 

  • Ding, X., Liu, K., Deng, B., et al., 2013. Isolation and characterization of endophytic fungi from Camptotheca acuminata. World J. Microbiol. Biotechnol., 29(10):1831–1838. http://dx.doi.org/10.1007/s11274-013-1345-x

    Article  CAS  PubMed  Google Scholar 

  • Gao, J.M., Xiao, J., Zhang, Q., et al., 2014. Secondary metabolites from the endophytic Botryosphaeria dothidea of Melia azedarach and their antifungal, antibacterial, antioxidant, and cytotoxic activities. J. Agric. Food Chem., 62(16):3584–3590. http://dx.doi.org/10.1021/jf500054f

    Article  PubMed  Google Scholar 

  • Garcia, A., Rhoden, S.A., Rubin-Filho, C.J., et al., 2012. Diversity of foliar endophytic fungi from the medicinal plant Sapindus saponaria L. and their localization by scanning electron microscopy. Biol. Res., 45(2):139–148. http://dx.doi.org/10.4067/S0716-97602012000200006

    Article  PubMed  Google Scholar 

  • Ghimire, S.R., Charlton, N.D., Bell, J.D., et al., 2011. Biodiversity of fungal endophyte communities inhabiting switchgrass (Panicum virgatum L.) growing in the native tall grass prairie of northern Oklahoma. Fungal Div., 47(1):19–27. http://dx.doi.org/10.1007/s13225-010-0085-6

    Article  Google Scholar 

  • Ghosh, S., Derle, A., Ahire, M., et al., 2013. Phytochemical analysis and free radical scavenging activity of medicinal plants Gnidia glauca and Dioscorea bulbifera. PLoS ONE, 8(12):e82529. http://dx.doi.org/10.1371/journal.pone.0082529

    Article  PubMed  PubMed Central  Google Scholar 

  • Gubiani, J.R., Zeraik, M.L., Oliveira, C.M., et al., 2014. Biologically active eremophilane-type sesquiterpenes from Camarops sp., an endophytic fungus isolated from Alibertia macrophylla. J. Nat. Prod., 77(3):668–672. http://dx.doi.org/10.1021/np400825s

    Article  CAS  PubMed  Google Scholar 

  • Gulati, V., Harding, I.H., Palombo, E.A., 2012. Enzyme inhibitory and antioxidant activities of traditional medicinal plants: potential application in the management of hyperglycemia. BMC Comp. Alter. Med., 12:77. http://dx.doi.org/10.1186/1472-6882-12-77

    Article  Google Scholar 

  • Hilbert, M., Voll, L.M., Ding, Y., et al., 2012. Indole derivative production by the root endophyte Piriformospora indica is not required for growth promotion but for biotrophic colonization of barley roots. New Phytol., 196(2): 520–534. http://dx.doi.org/10.1111/j.1469-8137.2012.04275.x

    Article  CAS  PubMed  Google Scholar 

  • Huang, W.Y., Cai, Y.Z., Xing, J., et al., 2007. A potential antioxidant resource: endophytic fungi from medicinal plants. Econ. Bot., 61(1):14–30. http://dx.doi.org/10.1663/0013-0001(2007)61[14:APARE F]2.0.CO;2

    Article  CAS  Google Scholar 

  • Keerthi, M., Jumpponen, A., 2014. Unraveling the Dark Septate Endophyte Functions: Insights from the Arabidopsis Model. Advances in Endophytic Research. Springer India, p.115–141.

    Google Scholar 

  • Kende, H., 2001. Hormone response mutants: a plethora of surprises. Plant Physiol., 125(1):81–84. http://dx.doi.org/10.1104/pp.125.1.81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan, A.L., Hamayun, M., Kim, Y.H., et al., 2011. Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiol. Biochem., 49(8):852–862. http://dx.doi.org/10.1016/j.plaphy.2011.03.005

    Article  CAS  PubMed  Google Scholar 

  • Khan, A.L., Hussain, J., Al-Harrasi, A., et al., 2013. Endophytic fungi: a source of gibberellins and crop resistance to abiotic stress. Crit. Rev. Biotech., 35(1):1–13. http://dx.doi.org/10.3109/07388551.2013.800018

    Google Scholar 

  • Kipkore, W., Wanjohi, B., Rono, H., et al., 2014. A study of the medicinal plants used by the Marakwet Community in Kenya. J. Ethnobiol. Ethnomed., 10(1):24. http://dx.doi.org/10.1186/1746-4269-10-24

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar, D.S.S., Hyde, K.D., 2004. Biodiversity and tissuerecurrence of endophytic fungi in Tripterygium wilfordii. Fungal Divers., 17:69–90.

    CAS  Google Scholar 

  • Kusari, S., Singh, S., Jayabaskaran, C., 2014. Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol., 32(6):297–303. http://dx.doi.org/10.1016/j.tibtech.2014.03.009

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Dong, M., Chen, X., et al., 2007. Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba. Food Chem., 105(2):548–554. http://dx.doi.org/10.1016/j.foodchem.2007.04.008

    Article  CAS  Google Scholar 

  • Mandyam, K.G., Roe, J., Jumpponen, A., 2013. Arabidopsis thaliana model system reveals a continuum of responses to root endophyte colonization. Fungal Biol., 117(4): 250–260. http://dx.doi.org/10.1016/j.funbio.2013.02.001

    Article  PubMed  Google Scholar 

  • Murphy, B.R., Doohan, F.M., Hodkinson, T.R., 2014. Yield increase induced by the fungal root endophyte Piriformospora indica in barley grown at low temperature is nutrient limited. Symbiosis, 62(1):29–39. http://dx.doi.org/10.1007/s13199-014-0268-0

    Article  Google Scholar 

  • Nalini, M.S., Sunayana, N., Prakash, H.S., 2014. Endophytic fungal diversity in medicinal plants of Western Ghats, India. Int. J. Biodiv., 2014:1–9. http://dx.doi.org/10.1155/2014/494213

    Article  Google Scholar 

  • Nath, A., Chattopadhyay, A., Joshi, S.R., 2015. Biological activity of endophytic fungi of Rauwolfia serpentine Benth: an ethnomedicinal plant used in folk medicines in northeast India. PNAS, 85(1):233–240. http://dx.doi.org/10.1007/s40011-013-0184-8

    CAS  Google Scholar 

  • Nishijima, T., Koshioka, M., Yamazaki, H., 1994. Use of several gibberellin biosynthesis inhibitors in sensitized rice seedling bioassays. Biosci. Biotechnol. Biochem., 58(3):572–573. http://dx.doi.org/10.1271/bbb.58.572

    Article  CAS  Google Scholar 

  • Orlandelli, R.C., Alberto, R.N., Rubin Filho, C.J., et al., 2012. Diversity of endophytic fungal community associated with Piper hispidum (Piperaceae) leaves. Genet. Mol. Res., 11(2):1575–1585. http://dx.doi.org/10.4238/2012.May.22.7

    Article  CAS  PubMed  Google Scholar 

  • Rai, M.R., Rathod, D., Agarkar, G., et al., 2014. Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture. Symbiosis, 62(2):63–79. http://dx.doi.org/10.1007/s13199-014-0273-3

    Article  CAS  Google Scholar 

  • Redman, R.S., Kim, Y.O., Woodward, C.J.D.A., et al., 2011. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS ONE, 6(7):e14823. http://dx.doi.org/10.1371/journal.pone.0014823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhardt, D., Mandel, T., Kuhlemeier, C., 2000. Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell, 12(4):507–518. http://dx.doi.org/10.2307/3871065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saeed, N., Khan, M.R., Shabbir, M., 2012. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Comp. Alter. Med., 12:221. http://dx.doi.org/10.1186/1472-6882-12-221

    Article  CAS  Google Scholar 

  • Sakayaroj, Y., Preedanon, S., Supaphon, O., et al., 2010. Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand. Fungal Div., 42(1):27–45. http://dx.doi.org/10.1007/s13225-009-0013-9

    Article  Google Scholar 

  • Schulz, B., Boyle, C., 2005. The endophytic continuum. Mycol. Res., 109(6):661–686. http://dx.doi.org/10.1017/S095375620500273X

    Article  PubMed  Google Scholar 

  • Slinkard, K., Singleton, L., 1977. Total phenol analyses: automation and comparison with manual methods. Am. J. Enol. Vitic., 28:49–55.

    CAS  Google Scholar 

  • Strobel, G., Daisy, B., Castillo, U., et al., 2004. Natural products from endophytic microorganisms. J. Nat. Prod., 67(2):257–268. http://dx.doi.org/10.1021/np030397v

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., et al., 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol., 28(10):2731–2739. http://dx.doi.org/10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, A.M.C., Jeewon, R., Hyde, K.D., 2009. A re-evaluation of the evolutionary relationships within the Xylariaceae based on ribosomal and protein-coding gene sequences. Fungal Div., 34:127–155.

    Google Scholar 

  • Thakur, A., Kaur, S., Kaur, A., et al., 2013. Enhanced resistance to Spodoptera litura in endophyte infected cauliflower plants. Environ. Entomol., 42(2):240–246. http://dx.doi.org/10.1603/EN12001

    Article  PubMed  Google Scholar 

  • Torres, M.S., White, J.F.Jr., Zhang, X., et al., 2012. Endophytemediated adjustments in host morphology and physiology and effects on host fitness traits in grasses. Fungal Ecol., 5(3):322–330. http://dx.doi.org/10.1016/j.funeco.2011.05.006

    Article  Google Scholar 

  • Ullah, I., Khan, A.R., Park, G.S., et al., 2013. Analysis of phytohormones and phosphate solubilization in Photorhabdus spp. Food Sci. Biotechnol., 22(S1):25–31. http://dx.doi.org/10.1007/s10068-013-0044-6

    Article  CAS  Google Scholar 

  • Vadassery, V., Ritter, C., Venus, Y., et al., 2008. The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. MPMI, 21(10):1371–1383. http://dx.doi.org/10.1094/MPMI-21-10-1371

    Article  CAS  PubMed  Google Scholar 

  • Waller, F., Achatz, B., Baltruschat, H., et al., 2005. The endophytic fungus Piriformis indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. PNAS, 102(38):13386–13391. http://dx.doi.org/10.1073/pnas.0504423102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L.W., Xu, B.G., Wang, J.Y., et al., 2012. Bioactive metabolites from Phoma species, an endophytic fungus from the Chinese medicinal plant Arisaema erubescens. Appl. Microbiol. Biotechnol., 93(3):1231–1239. http://dx.doi.org/10.1007/s00253-011-3472-3

    Article  CAS  PubMed  Google Scholar 

  • Waqas, M., Khan, A.L., Lee, I.J., 2014. Bioactive chemical constituents produced by endophytes and effects on rice plant growth. J. Plant Interact., 9(1):478–487. http://dx.doi.org/10.1080/17429145.2013.860562

    Article  CAS  Google Scholar 

  • White, J.F. Jr., Torres, M.S., 2010. Is plant endophyte mediated defensive mutualism the result of oxidative stress protection? Physiol. Plant., 138(4):440–446. http://dx.doi.org/10.1111/j.1399-3054.2009.01332.x

    Article  CAS  PubMed  Google Scholar 

  • Xiao, J., Zhang, Q., Gao, Y.Q., et al., 2014. Secondary metabolites from the endophytic Botryosphaeria dothidea of Melia azedarach and their antifungal, antibacterial, antioxidant, and cytotoxic activities. J. Agric. Food Chem., 62(16):3584–3590. http://dx.doi.org/10.1021/jf500054f

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Xiong, H., Zhao, H., et al., 2013. An antimicrobial compound from the endophytic fungus Phoma sp. isolated from the medicinal plant Taraxacum mongolicum. J. Taiwan Inst. Chem. Eng., 44(2):177–181. http://dx.doi.org/10.1016/j.jtice.2012.11.013

    Article  Google Scholar 

  • Zhang, Y., Crous, P.W., Schoch, C.L., et al., 2011. Pleosporales. Fungal Div., 53(1):1–221. http://dx.doi.org/10.1007/s13225-011-0117-x

    Article  Google Scholar 

  • Zhao, J.T., Ma, D.H., Luo, M., et al., 2014. In vitro antioxidant activities and antioxidant enzyme activities in HepG2 cells and main active compounds of endophytic fungus from pigeon pea [Cajanus cajan (L.) Millsp.]. Food Res. Int., 56:243–251. http://dx.doi.org/10.1016/j.foodres.2013.12.028

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to In-Jung Lee or Ahmed Al-Harrasi.

Additional information

Project supported by the Oman Research Council (FURAP Program), and the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Agriculture, Food and Rural Affairs Research Center Support Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (716001-7)

Electronic supplementary materials: The online version of this article (http://dx.doi.org/10.1631/jzus.B1500271) contains supplementary materials, which are available to authorized users

ORCID: Ahmed AL-HARRASI, http://orcid.org/0000-0002-0815-5942

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.L., Gilani, S.A., Waqas, M. et al. Endophytes from medicinal plants and their potential for producing indole acetic acid, improving seed germination and mitigating oxidative stress. J. Zhejiang Univ. Sci. B 18, 125–137 (2017). https://doi.org/10.1631/jzus.B1500271

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1500271

Key words

关键词

CLC number

Navigation