Skip to main content
Log in

Effect of high glucose levels on the calcification of vascular smooth muscle cells by inducing osteoblastic differentiation and intracellular calcium deposition via BMP-2/Cbfα-1 pathway

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

In this paper, we investigate the effect and the possible mechanism of high glucose levels on the calcification of human aortic smooth muscle cells (HASMCs). HASMCs were divided into four groups: normal glucose group (NG), osmolality control group (OC), high glucose group (HG, HASMCs culture medium containing 30 mmol/L glucose), and high glucose plus recombinant human Noggin protein (bone morphogenetic protein-2 (BMP-2) antagonist) group (HN). The mRNA levels and the protein expressions of BMP-2 and core binding factor alpha-1 (Cbfα-1) were measured by real-time quantitative polymerase chain reaction (PCR) and Western blot. After induced by 10 mmol/L β-glycerol phosphoric acid, cells were harvested for assessments of alkaline phosphatase (ALP) activities at Days 1, 2, and 3, and intracellular calcium contents at Days 7 and 14, respectively. High glucose levels increased the mRNA levels and the protein expressions of BMP-2 and Cbfα-1 (P<0.05). The expression of Cbfα-1 was partially blocked by Noggin protein (P<0.05), while BMP-2 was not (P>0.05). After being induced by β-glycerol phosphoric acid, high glucose levels increased the ALP activity [(48.63±1.03) vs. (41.42±2.28) U/mg protein, Day 3; P<0.05] and the intracellular calcium content [(2.76±0.09) vs. (1.75±0.07) μmol/mg protein, Day 14; P<0.05] in a time-dependent manner when compared with the NG group, while the ALP activity could not be blocked by Noggin protein [(48.63±1.03) vs. (47.37±0.97) U/mg protein, Day 3; P>0.05]. These results show that high glucose levels can evoke the calcification of HASMCs by inducing osteoblastic trans-differentiation and intracellular calcium deposition via the BMP-2/Cbfα-1 pathway, which can be partially blocked by Noggin protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Attisano, L., Wrana, J.L., 2002. Signal transduction by the TGF-β superfamily. Science, 296(5573):1646–1647. [doi: 10.1126/science.1071809]

    Article  CAS  PubMed  Google Scholar 

  • Busch, C., Drews, U., Eisele, S.R., Garbe, C., Oppitz, M., 2008. Noggin blocks invasive growth of murine B16-F1 melanoma cells in the optic cup of the chick embryo. Int. J. Cancer, 122(3):526–533. [doi:10.1002/ijc.23139]

    Article  CAS  PubMed  Google Scholar 

  • Canalis, E., Economides, A.N., Gazzerro, E., 2003. Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr. Rev., 24(2):218–235. [doi:10.1210/er.2002-0023]

    Article  CAS  PubMed  Google Scholar 

  • Chen, N.X., O'Neill, K.D., Duan, D., Moe, S.M., 2002.Phosphorus and uremic serum up-regulate osteopontin expression in vascular smooth muscle cells. Kidney Int., 662 (5):1724–1731. [doi:10.1046/j.1523-1755.2002.00625.x]

    Article  CAS  PubMed  Google Scholar 

  • Chen, N.X., Duan, D., O'Neill, K.D., Moe, S.M., 2006. High glucose increases the expression of Cbfα1 and BMP-2 and enhances the calcification of vascular smooth muscle cells. Nephrol. Dial. Transplant., 221 (12):3435–3442. [doi: 10.1093/ndt/gfl429]

    Article  CAS  PubMed  Google Scholar 

  • Conley, B.A., Smith, J.D., Guerrero-Esteo, M., Bernabeu, C., Vary, C.P., 2000. Endoglin, a TGF-β receptor-associated protein, is expressed by smooth muscle cells in human atherosclerotic plaques. Atherosclerosis, 153(2):323–335. [doi:10.1016/S0021-9150(00)00422-6]

    Article  CAS  PubMed  Google Scholar 

  • Dhore, C.R., Cleutjens, J.P., Lutgens, E., Cleutjens, K.B., Geusens, P.P., Kitslaar, P.J., Tordoir, J.H., Spronk, H.M., Vermeer, C., Daemen, M.J., 2001. Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques. Arterioscler. Thromb. Vasc. Biol., 21(12):1998–2003. [doi:10.1161/hq1201.100229]

    Article  CAS  PubMed  Google Scholar 

  • Doherty, T.M., Fitzpatrick, L.A., Inoue, D., Qiao, J.H., Fishbein, M.C., Detrano, R.C., Shah, P.K., Rajavashisth, T.B., 2004. Molecular, endocrine, and genetic mechanisms of arterial calcification. Endocr. Rev., 25(4):629–672. [doi:10.1210/er.2003-0015]

    Article  CAS  PubMed  Google Scholar 

  • Lee, K.S., Kim, H.J., Li, Q.L., Chi, X.Z., Ueta, C., Komori, T., Wozney, J.M., Kim, E.G., Choi, J.Y., Ryoo, H.M., et al., 2000. Runx2 is a common target of transforming growth factor-1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast- specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol. Cell. Biol., 20(23):8783–8792. [doi:10.1128/MCB.20.23.8783-8792.2000]

    Article  CAS  PubMed  Google Scholar 

  • Lehto, S., Niskanen, L., Suhonen, M., Rönnemaa, T., Laakso, M., 1996. Medial artery calcification a neglected harbinger of cardiovascular complications in non-insulin- dependent diabetes mellitus. Arterioscler. Thromb. Vasc. Biol., 16(8):978–983.

    CAS  PubMed  Google Scholar 

  • Moe, S.M., Chen, N.X., 2004. Pathophysiology of vascular calcification in chronic kidney disease. Circ. Res., 95(6): 560–567. [doi:10.1161/01.RES.0000141775.67189.98]

    Article  CAS  PubMed  Google Scholar 

  • Moe, S.M., Duan, D., Doehle, B.P., O'Neill, K.D., Chen, N.X., 2003. Uremia induces the osteoblast differentiation factor Cbfα1 in human blood vessels. Kidney Int., 63(3):1003–1011. [doi:10.1046/j.1523-1755.2003.00820.x]

    Article  CAS  PubMed  Google Scholar 

  • Mori, K., Shioi, A., Jono, S., Nishizawa, Y., Morii, H., 1999. Dexamethasone enhances in vitro vascular calcification by promoting osteoblastic differentiation of vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol., 19(9):2112–2118.

    CAS  PubMed  Google Scholar 

  • Otto, F., Lubbert, M., Stock, M., 2003. Upstream and downstream targets of RUNX proteins. J. Cell Biochem., 89(1): 9–18. [doi:10.1002/jcb.10491]

    Article  CAS  PubMed  Google Scholar 

  • Parhami, F., Basseri, B., Hwang, J., Tintut, Y., Demer, L.L., 2002. High density lipoprotein regulates calcification of vascular cells. Circ. Res., 91(7):570–576. [doi:10.1161/01.RES.0000036607.05037.DA]

    Article  CAS  PubMed  Google Scholar 

  • Shanahan, C.M., Cary, N.R., Metcalfe, J.C., Weissberg, P.L., 1994. High expression of genes for calcification-regulating proteins in human atherosclerotic plaques. J. Clin. Invest., 93(6):2393–2402. [doi:10.1172/JCI117246]

    Article  CAS  PubMed  Google Scholar 

  • Shioi, A., Nishizawa, Y., Jono, S., Koyama, H., Hosoi, M., Morii, H., 1995. β-glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol., 15(11):2003–2009.

    CAS  PubMed  Google Scholar 

  • Shioi, A., Katagi, M., Okuno, Y., Mori, K., Jono, S., Koyama, H., Nishizawa, Y., 2002. Induction of bone-type alkaline phosphatase in human vascular smooth muscle cells: roles of tumor necrosis factor-α and oncostatin M derived from macrophages. Circ. Res., 91(1):9–16. [doi:10.1161/01.RES.0000026421.61398.F2]

    Article  CAS  PubMed  Google Scholar 

  • Steitz, S.A., Speer, M.Y., Curinga, G., Yang, H.Y., Haynes, P., Aebersold, R., Schinke, T., Karsenty, G., Giachelli, C.M., 2001. Smooth muscle cell phenotypic transition associated with calcification: upregulation of Cbfα1 and downregulation of smooth muscle lineage markers. Circ. Res., 89(12):1147–1154. [doi:10.1161/hh2401.101070]

    Article  CAS  PubMed  Google Scholar 

  • Takayama, K., Suzuki, A., Manaka, T., Taguchi, S., Hashimoto, Y., Imai, Y., Wakitani, S., Takaoka, K., 2009. RNA interference for Noggin enhances the biological activity of bone morphogenetic proteins in vivo and in vitro. J. Bone Miner. Metab., 27(4):402–411. [doi:10.1007/s00774-009-0054-x]

    Article  CAS  PubMed  Google Scholar 

  • Tintut, Y., Patel, J., Parhami, F., 2000. Tumor necrosis factor-α promotes in vitro calcification of vascular cells via the cAMP pathway. Circulation, 102(21):2636–2642.

    CAS  PubMed  Google Scholar 

  • Yuasa, S., Fukuda, K., 2008. Multiple roles for BMP signaling in cardiac development. Drug Discov. Today: Ther. Strategies, 5(4):209–214. [doi:10.1016/j.ddstr.2008.12.001]

    Article  Google Scholar 

  • Zhu, W., Kim, J., Cheng, C., Rawlins, B.A., Boachie-Adjei, O., Crystal, R.G., Hidaka, C., 2006. Noggin regulation of bone morphogenesis protein (BMP) 2/7 heterodimer activity in vitro. Bone, 39(1):61–71. [doi:10.1016/j.bone.2005.12.018]

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Fu.

Additional information

The two authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Zhong, H., Liang, Jy. et al. Effect of high glucose levels on the calcification of vascular smooth muscle cells by inducing osteoblastic differentiation and intracellular calcium deposition via BMP-2/Cbfα-1 pathway. J. Zhejiang Univ. Sci. B 11, 905–911 (2010). https://doi.org/10.1631/jzus.B1000119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1000119

Key words

CLC number

Navigation