Skip to main content
Log in

Generative adversarial network based novelty detection usingminimized reconstruction error

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Generative adversarial network (GAN) is the most exciting machine learning breakthrough in recent years, and it trains the learning model by finding the Nash equilibrium of a two-player zero-sum game. GAN is composed of a generator and a discriminator, both trained with the adversarial learning mechanism. In this paper, we introduce and investigate the use of GAN for novelty detection. In training, GAN learns from ordinary data. Then, using previously unknown data, the generator and the discriminator with the designed decision boundaries can both be used to separate novel patterns from ordinary patterns. The proposed GAN-based novelty detection method demonstrates a competitive performance on the MNIST digit database and the Tennessee Eastman (TE) benchmark process compared with the PCA-based novelty detection methods using Hotelling’s T2 and squared prediction error statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abadi M, Andersen D, 2016. Learning to protect communications with adversarial neural cryptography. https://arxiv.org/abs/1610.06918

    Google Scholar 

  • Arjovsky M, Chintala S, Bottou L, 2017. Wasserstein generative adversarial networks. Int Conf on Machine Learning, p.214–223.

    Google Scholar 

  • Berthelot D, Schumm T, Metz L, 2017. BEGAN: boundary equilibrium generative adversarial networks. https://arxiv.org/abs/1703.10717

    Google Scholar 

  • Clifton L, Clifton D, Watkinson P, et al., 2011. Identification of patient deterioration in vital-sign data using one-class support vector machines. Federated Conf on Computer Science and Information Systems, p.125–131.

    Google Scholar 

  • Denton E, Chintala S, Fergus R, et al., 2015. Deep generative image models using a Laplacian pyramid of adversarial networks. Advances in Neural Information Processing Systems, p.1486–1494.

    Google Scholar 

  • Donahue J, Krähenbühl P, Darrell T, 2016. Adversarial feature learning. https://arxiv.org/abs/1605.09782

    Google Scholar 

  • Downs J, Vogel E, 1993. A plant-wide industrial process control problem. Comput Chem Eng, 17(3):245–255. https://doi.org/10.1016/0098-1354(93)80018-I

    Article  Google Scholar 

  • Dumoulin V, Belghazi I, Poole B, et al., 2016. Adversarially learned inference. https://arxiv.org/abs/1606.00704

  • Ge Z, Song Z, 2013. Bagging support vector data description model for batch process monitoring. J Proc Contr, 23(8):1090–1096. https://doi.org/10.1016/j.jprocont.2013.06.010

    Article  Google Scholar 

  • Ge Z, Yang C, Song Z, 2009. Improved kernel PCA-based monitoring approach for nonlinear processes. Chem Eng Sci, 64(9):2245–2255. https://doi.org/10.1016/j.ces.2009.01.050

    Article  Google Scholar 

  • Ge Z, Gao F, Song Z, 2011. Batch process monitoring based on support vector data description method. J Proc Contr, 21(6):949–959. https://doi.org/10.1016/j.jprocont.2011.02.004

    Article  Google Scholar 

  • Ge Z, Song Z, Gao F, 2013. Review of recent research on data-based process monitoring. Ind Eng Chem Res, 52(10):3543–3562. https://doi.org/10.1021/ie302069q

    Article  Google Scholar 

  • Ge Z, Demyanov S, Chen Z, et al., 2017. Generative Open-Max for multi-class open set classification. https://arxiv.org/abs/1707.07418

    Google Scholar 

  • Goodfellow I, Pouget-Abadie J, Mirza M, et al., 2014. Generative adversarial nets. Advances in Neural Information Processing Systems, p.2672–2680.

    Google Scholar 

  • Grover A, Ermon S, 2017. Boosted generative models. https://arxiv.org/abs/1702.08484

    Google Scholar 

  • Hautamaki V, Karkkainen I, Franti P, 2004. Outlier detection using k-nearest neighbour graph. Proc 17th Int Conf on Pattern Recognition, p.430–433. https://doi.org/10.1109/ICPR.2004.1334558

    Google Scholar 

  • He Z, Deng S, Xu X, 2005. An optimization model for outlier detection in categorical data. LNCS, 3644:400–409. https://doi.org/10.1007/11538059_42

    Google Scholar 

  • Hoffmann H, 2007. Kernel PCA for novelty detection. Patt Recogn, 40(3):863–874. https://doi.org/10.1016/j.patcog.2006.07.009

    Article  MATH  Google Scholar 

  • Kadurin A, Aliper A, Kazennov A, et al., 2017a. The cornucopia of meaningful leads: applying deep adversarial autoencoders for new molecule development in oncology. Oncotarget, 8(7):10883. https://doi.org/10.18632/oncotarget.14073

    Article  Google Scholar 

  • Kadurin A, Nikolenko S, Khrabrov K, et al., 2017b. dru-GAN: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico. Mol Pharmaceut, 14(9):3098–3104. https://doi.org/10.1021/acs.molpharmaceut.7b00346

    Article  Google Scholar 

  • Keogh E, Lonardi S, Ratanamahatana C, 2004. Towards parameter-free data mining. Proc 10th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining, p.206–215. https://doi.org/10.1145/1014052.1014077

    Google Scholar 

  • Kim T, Cha M, Kim H, et al., 2017. Learning to discover cross-domain relations with generative adversarial networks. https://arxiv.org/abs/1703.05192

    Google Scholar 

  • Ledig C, Theis L, Huszár F, et al., 2016. Photo-realistic single image super-resolution using a generative adversarial network. https://arxiv.org/abs/1609.04802

    Google Scholar 

  • Li J, Liang X, Wei Y, et al., 2017. Perceptual generative adversarial networks for small object detection. CVPR, p.1951–1959. https://doi.org/10.1109/CVPR.2017.211

    Google Scholar 

  • Li Y, Maguire L, 2011. Selecting critical patterns based on local geometrical and statistical information. IEEE Trans Patt Anal Mach Intell, 33(6):1189–1201. https://doi.org/10.1109/TPAMI.2010.188

    Article  Google Scholar 

  • Li Y, Liu S, Yang J, et al., 2017. Generative face completion. CVPR, p.5892–5900. https://doi.org/10.1109/CVPR.2017.624

    Google Scholar 

  • Luc P, Couprie C, Chintala S, et al., 2016. Semantic segmentation using adversarial networks. https://arxiv.org/abs/1611.08408

    Google Scholar 

  • Mahadevan S, Shah S, 2009. Fault detection and diagnosis in process data using one-class support vector machines. J Proc Contr, 19(10):1627–1639. https://doi.org/10.1016/j.jprocont.2009.07.011

    Article  Google Scholar 

  • Mao X, Li Q, Xie H, et al., 2016. Least squares generative adversarial networks. https://arxiv.org/abs/1611.04076

    Google Scholar 

  • Mogren O, 2016. C-RNN-GAN: continuous recurrent neural networks with adversarial training. https://arxiv.org/abs/1611.09904

    Google Scholar 

  • Patcha A, Park J, 2007. An overview of anomaly detection techniques: existing solutions and latest technological trends. Comput Netw, 51(12):3448–3470. https://doi.org/10.1016/j.comnet.2007.02.001

    Article  Google Scholar 

  • Pimentel M, Clifton D, Clifton L, et al., 2014. A review of novelty detection. Signal Process, 99:215–249. https://doi.org/10.1016/j.sigpro.2013.12.026

    Article  Google Scholar 

  • Radford A, Metz L, Chintala S, 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. https://arxiv.org/abs/1511.06434

    Google Scholar 

  • Reed S, Akata Z, Yan X, et al., 2016. Generative adversarial text to image synthesis. Proc 33rd Int Conf on Machine Learning, p.1060–1069.

    Google Scholar 

  • Schlegl T, Seeböck P, Waldstein S, et al., 2017. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. Int Conf on Information Processing in Medical Imaging, p.146–157. https://doi.org/10.1007/978-3-319-59050-9_12

    Chapter  Google Scholar 

  • Springenberg J, 2015. Unsupervised and semi-supervised learning with categorical generative adversarial networks. https://arxiv.org/abs/1511.06390

    Google Scholar 

  • Vondrick C, Pirsiavash H, Torralba A, 2016. Generating videos with scene dynamics. Advances in Neural Information Processing Systems, p.613–621.

    Google Scholar 

  • Wu J, Zhang C, Xue T, et al., 2016. Learning a probabilistic latent space of object shapes via 3D generativeadversarial modeling. Advances in Neural Information Processing Systems, p.82–90.

    Google Scholar 

  • Xiao Y, Wang H, Xu W, et al., 2016. Robust one-class SVM for fault detection. Chemometr Intell Lab Syst, 151: 15–25. https://doi.org/10.1016/j.chemolab.2015.11.010

    Article  Google Scholar 

  • Yang Z, Chen W, Wang F, et al., 2017. Improving neural machine translation with conditional sequence generative adversarial nets. https://arxiv.org/abs/1703.04887

    Google Scholar 

  • Yeh R, Chen C, Lim T, et al., 2016. Semantic image inpainting with perceptual and contextual losses. https://arxiv.org/abs/1607.07539

    Google Scholar 

  • Yi Z, Zhang H, Gong P, et al., 2017. DualGAN: unsupervised dual learning for image-to-image translation. https://arxiv.org/abs/1704.02510

    Google Scholar 

  • Yu J, 2012. Semiconductor manufacturing process monitoring using Gaussian mixture model and Bayesian method with local and nonlocal information. IEEE Trans Semicond Manuf, 25(3):480–493. https://doi.org/10.1109/TSM.2012.2192945

    Article  Google Scholar 

  • Yu J, Qin S, 2008. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE J, 54(7):1811–1829. https://doi.org/10.1002/aic.11515

    Article  Google Scholar 

  • Yu J, Qin S, 2009. Multiway Gaussian mixture model based multiphase batch process monitoring. Ind Eng Chem Res, 48(18):8585–8594. https://doi.org/10.1021/ie900479g

    Article  Google Scholar 

  • Yu L, Zhang W, Wang J, et al., 2017. SeqGAN: sequence generative adversarial nets with policy gradient. 31st AAAI Conf on Artificial Intelligence, p.2852–2858.

    Google Scholar 

  • Zhao F, Feng J, Zhao J, et al., 2018. Robust LSTMautoencoders for face de-occlusion in the wild. IEEE Trans Image Process, 27(2):778–790. https://doi.org/10.1109/TIP.2017.2771408

    Article  MathSciNet  Google Scholar 

  • Zhao J, Mathieu M, LeCun Y, 2016. Energy-based generative adversarial network. https://arxiv.org/abs/1609.03126

    Google Scholar 

  • Zhu J, Park T, Isola P, et al., 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. https://arxiv.org/abs/1703.10593

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan-gang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Hg., Li, X. & Zhang, T. Generative adversarial network based novelty detection usingminimized reconstruction error. Frontiers Inf Technol Electronic Eng 19, 116–125 (2018). https://doi.org/10.1631/FITEE.1700786

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1700786

Keywords

CLC number

Navigation