Skip to main content
Log in

Exploiting a depth context model in visual tracking with correlation filter

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Recently correlation filter based trackers have attracted considerable attention for their high computational efficiency. However, they cannot handle occlusion and scale variation well enough. This paper aims at preventing the tracker from failure in these two situations by integrating the depth information into a correlation filter based tracker. By using RGB-D data, we construct a depth context model to reveal the spatial correlation between the target and its surrounding regions. Furthermore, we adopt a region growing method to make our tracker robust to occlusion and scale variation. Additional optimizations such as a model updating scheme are applied to improve the performance for longer video sequences. Both qualitative and quantitative evaluations on challenging benchmark image sequences demonstrate that the proposed tracker performs favourably against state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, A., Rivlin, E., Shimshoni, I., 2006. Robust fragmentsbased tracking using the integral histogram. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.798–805. http://dx.doi.org/10.1109/CVPR.2006.256

    Google Scholar 

  • Adams, R., Bischof, L., 1994. Seeded region growing. IEEE Trans. Patt. Anal. Mach. Intell., 16(6):641–647. http://dx.doi.org/10.1109/34.295913

    Article  Google Scholar 

  • Bolme, D.S., Beveridge, J.R., Draper, B.A., et al., 2010. Visual object tracking using adaptive correlation filters. IEEE Conf. on Computer Vision and Pattern Recognition, p.2544–2550. http://dx.doi.org/10.1109/CVPR.2010.5539960

    Google Scholar 

  • Cehovin, L., Kristan, M., Leonardis, A., 2011. An adaptive coupled-layer visual model for robust visual tracking. IEEE Int. Conf. on Computer Vision, p.1363–1370. http://dx.doi.org/10.1109/ICCV.2011.6126390

    Google Scholar 

  • Chen, K., Lai, Y., Wu, Y., et al., 2014. Automatic semantic modeling of indoor scenes from low-quality RGB-D data using contextual information. ACM Trans. Graph., 33(6):208–219. http://dx.doi.org/10.1145/2661229.2661239

    Article  Google Scholar 

  • Choi, C., Christensen, H.I., 2013. RGB-D object tracking: a particle filter approach on GPU. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.1084–1091. http://dx.doi.org/10.1109/IROS.2013.6696485

    Google Scholar 

  • Danelljan, M., Häger, G., Khan, F.S., et al., 2014a. Accurate scale estimation for robust visual tracking. British Machine Vision Conf., p.1–11.

    Google Scholar 

  • Danelljan, M., Khan, F.S., Felsberg, M., et al., 2014b. Adaptive color attributes for real-time visual tracking. IEEE Conf. on Computer Vision and Pattern Recognition, p.1090–1097. http://dx.doi.org/10.1109/CVPR.2014.143

    Google Scholar 

  • Dinh, T.B., Vo, N., Medioni, G.G., 2011. Context tracker: exploring supporters and distracters in unconstrained environments. IEEE Conf. on Computer Vision and Pattern Recognition, p.1177–1184. http://dx.doi.org/10.1109/CVPR.2011.5995733

    Google Scholar 

  • Everingham, M., Gool, L.V., Williams, C.K., et al., 2010. The Pascal Visual Object Classes (VOC) challenge. Int. J. Comput. Vis., 88(2):303–338. http://dx.doi.org/10.1007/s11263-009-0275-4

    Article  Google Scholar 

  • Grabner, H., Matas, J., Gool, L.V., et al., 2010. Tracking the invisible: learning where the object might be. IEEE Conf. on Computer Vision and Pattern Recognition, p.1285–1292. http://dx.doi.org/10.1109/CVPR.2010.5539819

    Google Scholar 

  • Gupta, S., Girshick, R.B., Arbelaez, P., et al., 2014. Learning rich features from RGB-D images for object detection and segmentation. ECCV, p.345–360. http://dx.doi.org/10.1007/978-3-319-10584-0_23

    Google Scholar 

  • Hare, S., Saffari, A., Torr, P., et al., 2011. Struck: structured output tracking with kernels. IEEE Trans. Patt. Anal. Mach. Intell., 38(10):263–270. http://dx.doi.org/10.1109/TPAMI.2015.2509974

    Google Scholar 

  • Henriques, J.F., Caseiro, R., Martins, P., et al., 2012. Exploiting the circulant structure of tracking-by-detection with kernels. ECCV, p.702–715. http://dx.doi.org/10.1007/978-3-642-33765-9_50

    Google Scholar 

  • Henriques, J.F., Caseiro, R., Martins, P., et al., 2015. Highspeed tracking with kernelized correlation filters. IEEE Trans. Patt. Anal. Mach. Intell., 37(3):583–596. http://dx.doi.org/10.1109/TPAMI.2014.2345390

    Article  Google Scholar 

  • Hickson, S., Birchfield, S., Essa, I.A., et al., 2014. Efficient hierarchical graph-based segmentation of RGBD videos. IEEE Conf. on Computer Vision and Pattern Recognition, p.344–351.

    Google Scholar 

  • Izadinia, H., Saleemi, I., Li, W., et al., 2012. (MP) 2T: multiple people multiple parts tracker. IEEE Conf. on Computer Vision and Pattern Recognition, p.100–114. http://dx.doi.org/10.1007/978-3-642-33783-3_8

    Google Scholar 

  • Kalal, Z., Mikolajczyk, K., Matas, J., 2012. Trackinglearning-detection. IEEE Trans. Patt. Anal. Mach. Intell., 34(7):1409–1422. http://dx.doi.org/10.1109/TPAMI.2011.239

    Article  Google Scholar 

  • Kristan, M., Pflugfelder, R., Leonardis, A., et al., 2015. The visual object tracking VOT2014 challenge results. IEEE Conf. on Computer Vision and Pattern Recognition, p.191–217.

    Google Scholar 

  • Kumar, B.V., Mahalanobis, A., Juday, R.D., 2010. Correlation Pattern Recognition. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Lee, D., Sim, J., Kim, C., 2014. Visual tracking using pertinent patch selection and masking. IEEE Conf. on Computer Vision and Pattern Recognition, p.3486–3493.

    Google Scholar 

  • Li, X., Hu, W., Shen, C., et al., 2013. A survey of appearance models in visual object tracking. ACM Intell. Syst. Technol., 4(4):58. http://dx.doi.org/10.1145/2508037.2508039

    Google Scholar 

  • Li, Y., Zhu, J., 2014. A scale adaptive kernel correlation filter tracker with feature integration. ECCV, p.254–265. http://dx.doi.org/10.1007/978-3-319-16181-5_18

    Google Scholar 

  • Li, Y., Zhu, J., Hoi, S., et al., 2015. Reliable patch trackers: robust visual tracking by exploiting reliable patches. IEEE Conf. on Computer Vision and Pattern Recognition, p.353–361.

    Google Scholar 

  • Liu, T., Wang, G., Yang, Q., 2015. Real-time part-based visual tracking via adaptive correlation filters. IEEE Conf. on Computer Vision and Pattern Recognition, p.4902–4912.

    Google Scholar 

  • Luber, M., Spinello, L., Arras, K.O., 2011. People tracking in RGB-D data with on-line boosted target models. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.3844–3849. http://dx.doi.org/10.1109/IROS.2011.6095075

    Google Scholar 

  • Ma, C., Yang, X., Zhang, C., et al., 2015. Long-term correlation tracking. IEEE Conf. on Computer Vision and Pattern Recognition, p.5388–5396.

    Google Scholar 

  • Park, Y., Lepetit, V., Woo, W., 2011. Texture-less object tracking with online training using an RGB-D camera. 10th IEEE Int. Symp. on Mixed and Augmented Reality, p.121–126. http://dx.doi.org/10.1109/ISMAR.2011.6092377

    Google Scholar 

  • Ross, D.A., Lim, J., Lin, R.S., et al., 2008. Incremental learning for robust visual tracking. Int. J. Comput. Vis., 77(1-3):125–141. http://dx.doi.org/10.1007/s11263-007-0075-7

    Article  Google Scholar 

  • Shu, G., Dehghan, A., Oreifej, O., et al., 2012. Partbased multiple-person tracking with partial occlusion handling. IEEE Conf. on Computer Vision and Pattern Recognition, p.1815–1821. http://dx.doi.org/10.1007/s11263-007-0075-7

    Google Scholar 

  • Smeulders, A.W., Chu, D., Cucchiara, R., et al., 2014. Visual tracking: an experimental survey. IEEE Trans. Patt. Anal. Mach. Intell., 36(7):1442–1468. http://dx.doi.org/10.1109/TPAMI.2013.230

    Article  Google Scholar 

  • Song, S., Xiao, J., 2013. Tracking revisited using RGBD camera: unified benchmark and baselines. IEEE Int. Conf. on Computer Vision, p.233–240.

    Google Scholar 

  • Teichman, A., Lussier, J.T., Thrun, S., 2013. Learning to segment and track in RGBD. IEEE Trans. Autom. Sci. Eng., 10(4):841–852. http://dx.doi.org/10.1109/TASE.2013.2264286

    Article  Google Scholar 

  • Wu, Y., Lim, J., Yang, M., 2013. Online object tracking: a benchmark. IEEE Conf. on Computer Vision and Pattern Recognition, p.2411–2418.

    Google Scholar 

  • Yang, B., Nevatia, R., 2012. Online learned discriminative part-based appearance models for multi-human tracking. ECCV, p.484–498. http://dx.doi.org/10.1007/978-3-642-33718-5_35

    Google Scholar 

  • Yang, H., Shao, L., Zheng, F., et al., 2011. Recent advances and trends in visual tracking: a review. Neurocomputing, 74(18):3823–3831. http://dx.doi.org/10.1016/j.neucom.2011.07.024

    Article  Google Scholar 

  • Yang, M., Wu, Y., Hua, G., 2009. Context-aware visual tracking. IEEE Trans. Patt. Anal. Mach. Intell., 31(7):1195–1209. http://dx.doi.org/10.1109/TPAMI.2008.146

    Article  Google Scholar 

  • Yilmaz, A., Javed, O., Shah, M., 2006. Object tracking: a survey. ACM Comput. Surv., 38(4):13. http://dx.doi.org/10.1145/1177352.1177355

    Article  Google Scholar 

  • Zhang, L., Maaten, L., 2014. Preserving structure in modelfree tracking. IEEE Trans. Patt. Anal. Mach. Intell., 36(4):756–769. http://dx.doi.org/10.1109/TPAMI.2013.221

    Article  Google Scholar 

  • Zhang, K., Zhang, L., Liu, Q., et al., 2014. Fast visual tracking via dense spatio-temporal context learning. ECCV, p.127–141. http://dx.doi.org/10.1007/978-3-319-10602-1_9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-yun Chen.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61502509, 61402504, and 61272145), the National High-Tech R&D Program (863) of China (No. 2012AA012706), and the Research Fund for the Doctoral Program of Higher Education of China (No. 21024307130004)

ORCID: Lei LUO, http://orcid.org/0000-0002-9329-1411

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Zy., Luo, L., Huang, Df. et al. Exploiting a depth context model in visual tracking with correlation filter. Frontiers Inf Technol Electronic Eng 18, 667–679 (2017). https://doi.org/10.1631/FITEE.1500389

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500389

Key words

CLC number

Navigation