Skip to main content
Log in

Using Kinect for real-time emotion recognition via facial expressions

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Emotion recognition via facial expressions (ERFE) has attracted a great deal of interest with recent advances in artificial intelligence and pattern recognition. Most studies are based on 2D images, and their performance is usually computationally expensive. In this paper, we propose a real-time emotion recognition approach based on both 2D and 3D facial expression features captured by Kinect sensors. To capture the deformation of the 3D mesh during facial expression, we combine the features of animation units (AUs) and feature point positions (FPPs) tracked by Kinect. A fusion algorithm based on improved emotional profiles (IEPs) and maximum confidence is proposed to recognize emotions with these real-time facial expression features. Experiments on both an emotion dataset and a real-time video show the superior performance of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlberg, J., 2001. Candide-3—an Updated Parameterised Face. Technical Report.

    Google Scholar 

  • Breidt, M., Biilthoff, H.H., Curio, C., 2011. Robust semantic analysis by synthesis of 3D facial motion. Proc. IEEE Int. Conf. on Automatic Face & Gesture Recognition and Workshops, p.713–719. [doi:10.1109/FG.2011.5771336]

    Google Scholar 

  • Cao, C., Weng, Y.L., Zhou, S., et al., 2014. FaceWarehouse: a 3D facial expression database for visual computing. IEEE Trans. Visual. Comput. Graph., 20(3):413–425. [doi:10.1109/TVCG.2013.249]

    Article  Google Scholar 

  • Chang, C.C., Lin, C.J., 2011a. LIBSVM: a Library for Support Vector Machines. Available from http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html.

    Google Scholar 

  • Chang, C.C., Lin, C.J., 2011b. LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol., 2(3):27. [doi:10.1145/1961189.1961199]

    Article  Google Scholar 

  • Cosker, D., Krumhuber, E., Hilton, A., 2011. A FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling. Proc. IEEE Int. Conf. on Computer Vision, p.2296–2303. [doi:10.1109/ICCV.2011.6126510]

    Google Scholar 

  • Ekman, P., 1993. Facial expression and emotion. Am. Psychol., 48(4):384–392. [doi:10.1037/0003-066X.48.4.384]

    Article  Google Scholar 

  • Ekman, P., Friesen, W.V., 1978. Facial action coding system: a technique for the measurement of facial movement. Palo Alto.

    Google Scholar 

  • Fasel, B., Luettin, J., 2003. Automatic facial expression analysis: a survey. Patt. Recog., 36(1):259–275. [doi:10. 1016/S0031-3203(02)00052-3]

    Article  MATH  Google Scholar 

  • Hg, R.I., Jasek, P., Rofidal, C., et al., 2012. An RGB-D database using Microsoft’s Kinect for windows for face detection. Proc. 8th Int. Conf. on Signal Image Technology and Internet Based Systems, p.42–46. [doi:10. 1109/SITIS.2012.17]

    Google Scholar 

  • Li, B.Y., Mian, A.S., Liu, W.Q., et al., 2013. Using Kinect for face recognition under varying poses, expressions, illumination and disguise. Proc. IEEE Workshop on Applications of Computer Vision, p.186–192. [doi:10.1109/WACV.2013.6475017]

    Google Scholar 

  • Li, D.X., Sun, C., Hu, F.Q., et al., 2013. Real-time performance-driven facial animation with 3ds Max and Kinect. Proc. 3rd Int. Conf. on Consumer Electronics, Communications and Networks, p.473–476. [doi:10. 1109/CECNet.2013.6703372]

    Google Scholar 

  • Ma, X.H., Tan, Y.Q., Zheng, G.M., 2013. A fast classification scheme and its application to face recognition. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(7):561–572. [doi:10.1631/jzus.CIDE1309]

    Article  Google Scholar 

  • Mao, Q.R., Zhao, X.L., Huang, Z.W., et al., 2013. Speakerindependent speech emotion recognition by fusion of functional and accompanying paralanguage features. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(7):573–582. [doi:10.1631/jzus.CIDE1310]

    Article  Google Scholar 

  • Nicolaou, M.A., Gunes, H., Pantic, M., 2011. Continuous prediction of spontaneous affect from multiple cues and modalities in valence-arousal space. IEEE Trans. Affect. Comput., 2(2):92–105. [doi:10.1109/T-AFFC. 2011.9]

    Article  Google Scholar 

  • Savran, A., Alyüz, N., Dibeklioğlu, H., et al., 2008. Bosphorus database for 3D face analysis. Proc. 1st European Workshop on Biometrics and Identity Management, p.47–56. [doi:10.1007/978-3-540-89991-4_6]

    Chapter  Google Scholar 

  • Seddik, B., Maamatou, H., Gazzah, S., et al., 2013. Unsupervised facial expressions recognition and avatar reconstruction from Kinect. Proc. 10th Int. Multi-conf. on Systems, Signals & Devices, p.1–6. [doi:10.1109/SSD.2013.6564032]

    Google Scholar 

  • Stratou, G., Ghosh, A., Debevec, P., et al., 2011. Effect of illumination on automatic expression recognition: a novel 3D relightable facial database. Proc. IEEE Int. Conf. on Automatic Face & Gesture Recognition and Workshops, p.611–618. [doi:10.1109/FG.2011.5771467]

    Google Scholar 

  • van den Hurk, Y., 2012. Gender Classification with Visual and Depth Images. MS Thesis, Tilburg University, the Netherlands.

    Google Scholar 

  • Vinciarelli, A., Pantic, M., Heylen, D., et al., 2012. Bridging the gap between social animal and unsocial machine: a survey of social signal processing. IEEE Trans. Affect. Comput., 3(1):69–87. [doi:10.1109/T-AFFC.2011.27]

    Article  Google Scholar 

  • Xu, S.B., Ma, G.H., Meng, W.L., et al., 2013. Statistical learning based facial animation. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(7):542–550. [doi:10. 1631/jzus.CIDE1307]

    Article  Google Scholar 

  • Zeng, Z., Pantic, M., Roisman, G.I., et al., 2009. A survey of affect recognition methods: audio, visual, and spontaneous expressions. IEEE Trans. Patt. Anal. Mach. Intell., 31(1):39–58. [doi:10.1109/TPAMI.2008.52]

    Article  Google Scholar 

  • Zhu, X.X., Ramanan, D., 2012. Face detection, pose estimation, and landmark localization in the wild. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.2879–2886. [doi:10.1109/CVPR.2012.6248014]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-rong Mao.

Additional information

Project supported by the National Natural Science Foundation of China (No. 61272211) and the Six Talent Peaks Project in Jiangsu Province of China (No. DZXX-026)

ORCID: Qi-rong MAO, http://orcid.org/0000-0002-5021-9057

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Qr., Pan, Xy., Zhan, Yz. et al. Using Kinect for real-time emotion recognition via facial expressions. Frontiers Inf Technol Electronic Eng 16, 272–282 (2015). https://doi.org/10.1631/FITEE.1400209

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1400209

Key words

CLC number

Navigation