Skip to main content
Log in

3D complex modulus tests on bituminous mixture with sinusoidal loadings in tension and/or compression

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This paper presents an investigation into 3D viscoelastic behaviour of bituminous mixture. Complex modulus tests were performed at ENTPE laboratory on cylindrical samples, for three different modes of sinusoidal loading: only tension, only compression and tension–compression. Stress-controlled mode was used for cyclic tension tests and cyclic compression tests whereas cyclic tension–compression tests were conducted in strain-controlled mode. For all loading conditions, the strain amplitude of sinusoidal cyclic loadings is less than 60 µm/m. Complex modulus E * and complex Poisson’s ratio ν * were measured at five temperatures ranging from 1 to 30 °C and at six frequencies ranging from 0.03 to 10 Hz. The results indicated that complex moduli are the same for the three modes of loading for average and low temperatures. Rather small differences were obtained between complex modulus values obtained from the three types of loading for higher temperatures. These differences could be explained by nonlinearity (modulus value depending on strain level) and accumulated strain existing for only tension and only compression type tests. No noticeable differences in complex Poisson’s ratio could be obtained from the three modes of loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Francken L, Partl M, Technical Committee on Bitumen and Asphalt Testing (1996) Complex modulus testing of asphaltic concrete: RILEM interlaboratory test program. Transp Res Rec 1545:133–142

    Article  Google Scholar 

  2. Witczak MW, Bonaquist R, Von Quintus H, Kaloush K (2000) Specimen geometry and aggregate size effects in uniaxial compression and constant height shear tests. Proc Assoc Asph Paving Technol 69:733–793

    Google Scholar 

  3. Di Benedetto H, Partl MN, Francken L, De la Roche C (2001) Stiffness testing for bituminous mixtures. Mater Struct 34:66–70

    Article  Google Scholar 

  4. Kallas BF (1970) Dynamic modulus of asphalt concrete in tension and tension-compression and discussion. Proc Assoc Asph Paving Technol 39:1–23

    Google Scholar 

  5. Khanal PP, Mamlouk MS (1995) Tensile versus compressive moduli of asphalt concrete. Transp Res Rec 1492:144–150

    Google Scholar 

  6. Airey G, Rahimzadeh B, Collop A (2003) Viscoelastic linearity limits for bituminous materials. In: 6th international RILEM symposium on performance testing and evaluation of bituminous materials, Zurich, pp. 331–338

  7. Di Benedetto H, Olard F, Sauzéat C, Delaporte B (2004) Linear viscoelastic behavior of bituminous materials: from binders to mixes. Road Mater Pavement Des 5(Special Issue):163–202

    Article  Google Scholar 

  8. Delaporte B, Di Benedetto H, Chaverot P, Gauthier G (2007) Linear viscoelastic properties of bituminous materials: from binders to mastics. J Assoc Asph Paving Technol, 34

  9. Nguyen QT, Di Benedetto H, Sauzéat C (2015) Linear and nonlinear viscoelastic behaviour of bituminous mixtures. Mater Struct 48(7):2339–2351

    Article  Google Scholar 

  10. Di Benedetto H, Delaporte B, Sauzéat C (2007) Three-dimensional linear behavior of bituminous materials: experiments and modeling. Int J Geomech (ASCE) 7(2):149–157

    Article  Google Scholar 

  11. Di Benedetto H, Sauzéat C, Sohm J (2009) Stiffness of bituminous mixtures using ultrasonic waves propagation. Road Mater Pavement Des 10(4):789–814

    Article  Google Scholar 

  12. Delaporte B, Di Benedetto H, Chaverot P, Gauthier G (2009) Linear viscoelastic properties of bituminous materials including new products made with ultrafine particles. Road Mater Pavement Des 10(1):7–38

    Article  Google Scholar 

  13. Nguyen QT, Di Benedetto H, Sauzéat C, Tapsoba N (2013) Time temperature superposition principle validation for bituminous mixes in the linear and nonlinear domains. J Mater Civ Eng 25(9):1181–1188

    Article  Google Scholar 

  14. Baaj H, Ech M, Tapsoba N, Sauzéat C, Di Benedetto H (2013) Thermomechanical characterization of asphalt mixtures modified with high contents of asphalt shingle modifier (ASM®) and reclaimed asphalt pavement (RAP). Mater Struct 46(10):1747–1763. doi:10.1617/s11527-013-0015

    Article  Google Scholar 

  15. Mangiafico S, Di Benedetto H, Sauzeat C et al (2013) Influence of reclaimed asphalt pavement content on complex modulus of asphalt binder blends and corresponding mixes: experimental results and modelling. Road Mater Pavement Des 14(Sup1):132–148

    Article  Google Scholar 

  16. Mounier D, Di Benedetto H, Sauzeat C (2012) Determination of bituminous mixtures linear properties using ultrasonic wave propagation. Constr Build Mater 36:638–647

    Article  Google Scholar 

  17. Gudmarsson A, Ryden N, Di Benedetto H et al (2014) Comparing linear viscoelastic properties of asphalt concrete measured by laboratory seismic and tension-compression tests. J Nondestr Eval 33(4):571–582

    Article  Google Scholar 

  18. Gudmarsson A, Ryden N, Di Benedetto H et al (2015) Complex modulus and complex Poisson’s ratio from cyclic and dynamic modal testing of asphalt concrete. Constr Build Mater 88:20–31

    Article  Google Scholar 

  19. Chehab GR, Kim YR, Schapery RA, Witczak MW, Bonaquist R (2002) Time-temperature superposition principle for asphalt concrete mixtures with growing damage in tension state. J Asph Paving Technol 71:559–593

    Google Scholar 

  20. Schwartz CW, Gibson N, Schapery RA (2002) Time-temperature superposition for asphalt concrete at large compressive strains. Transp Res Rec 1789:101–112

    Article  Google Scholar 

  21. Zhao Y, Kim YR (2003) Time-temperature superposition for asphalt mixtures with growing damage and permanent deformation in compression. Transp Res Rec 1832:161–172

    Article  Google Scholar 

  22. Nguyen HM, Pouget S, Di Benedetto H, Sauzéat C (2009) Time-temperature superposition principle for bituminous mixtures. Eur J Environ Civ Eng 13(9):1095–1107

    Article  Google Scholar 

  23. Nguyen ML, Sauzéat C, Di Benedetto H, Tapsoba N (2013) Validation of the time-temperature superposition principle for crack propagation in bituminous mixtures. Mater Struct 46(7):1075–1087. doi:10.1617/s11527-012-9954-7

    Article  Google Scholar 

  24. Pham NH, Sauzéat C, Di Benedetto H, Gonzalez-Leon JA, Barreto G, Nicolai A, Jakubowski M (2015) Reclaimed asphalt pavement and additives influence on 3D linear behaviour of warm mix asphalts. Road Mater Pavement Des 16(3):569–591. doi:10.1080/14680629.2015.1021108

    Article  Google Scholar 

  25. Pham NH, Sauzéat C, Di Benedetto H, Gonzalez-Leon JA, Barreto G, Nicolai A, Jakubowski M (2015) Analysis and modeling of 3D complex modulus tests on hot and warm bituminous mixtures. Mech Time-Depend Mater 19–2:167–186. doi:10.1007/s11043-015-9258-8

    Article  Google Scholar 

  26. Perraton D, Di Benedetto H, Sauzéat C, Hofko B, Graziani A, Nguyen QT, Pouget S, Poulikakos LD, Tapsoba N, Grenfell J (2016) 3Dim experimental investigation of linear viscoelastic properties of bituminous mixtures. Mater Struct 49(11):4813–4829. doi:10.1617/s11527-016-0827-3

    Article  Google Scholar 

  27. Graziani A, Di Benedetto H, Perraton D, Sauzéat C, Hofko B, Poulikakos LD, Pouget S (2017) Recommendation of RILEM TC 237-SIB on complex Poisson’s ratio characterization of bituminous mixtures. Mater Struct (accepted)

  28. Association Française de Normalisation (AFNOR) (2007) Bituminous mixtures—test methods for hot mix asphalt—part 33: specimen prepared by roller compactor. EN 12697-33:2003+A1:2007

  29. Nguyen QT, Di Benedetto H, Sauzéat C (2015) Effect of fatigue cyclic loading on linear viscoelastic properties of bituminous mixtures. J Mater Civ Eng. doi:10.1061/(ASCE)MT.1943-5533.0000996

    Google Scholar 

  30. Di Benedetto H, Nguyen QT, Sauzéat C (2011) Nonlinearity, heating, fatigue and thixotropy during cyclic loading of asphalt mixtures. Road Mater Pavement Des 12(1):129–158

    Article  Google Scholar 

  31. Nguyen QT, Di Benedetto H, Sauzéat C (2012) Determination of thermal properties of asphalt mixtures as another output from cyclic tension-compression test. Road Mater Pavement Des 13(1):85–103

    Article  Google Scholar 

  32. Gayte P, Di Benedetto H, Sauzéat C, Nguyen QT (2016) Influence of transient effects for analysis of complex modulus tests on bituminous mixtures. Road Mater Pavement Des 17(2):271–289

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) (Grant Number 107.02-2014.22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quang Tuan Nguyen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, Q.T., Di Benedetto, H., Sauzéat, C. et al. 3D complex modulus tests on bituminous mixture with sinusoidal loadings in tension and/or compression. Mater Struct 50, 98 (2017). https://doi.org/10.1617/s11527-016-0970-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-016-0970-x

Keywords

Navigation