Skip to main content
Log in

Dynamic Brazilian test of concrete using split Hopkinson pressure bar

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

To research the fracture pattern of concrete specimens, the dynamic splitting tensile tests are conducted in different arc loading angles and impact velocities. The stress state of the specimens can be calculated by analyzing the strain gauges data on the split Hopkinson pressure bar. The specimens under the lower impact velocity achieves the stress equilibrium in loading direction, and the stress-state of the specimen is similar to that of quasi-static condition, in which the initial crack occurs at the center of the specimen and propagates along the loading diameter direction. When the impact velocity increases, the stress equilibrium is difficult to attain, and multiple cracks sometimes even ribbon fracture fragments appear at the center of specimens. The impact velocity plays a significant role in the failure pattern of concrete specimens, and different angles arc loading affect the local stress distribution of the specimens. The suitable load angle can reduce the local failure and improve the failure pattern of specimens. The stress state and failure pattern of specimens simulated by LS-DYNA coincide with the test results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Carmona S, Aguado A (2012) New model for the indirect determination of the tensile stress–strain curve of concrete by means of the Brazilian test. Mater Struct 45(10):1473–1485

    Article  Google Scholar 

  2. ASTM C496, Splitting tensile strength of cylindrical concrete specimens

  3. Jianhong Y, Wu FQ, Sun JZ (2009) Estimation of the tensile elastic modulus using Brazilian disc by applying diametrically opposed concentrated loads. Int J Rock Mech Min Sci 46(3):568–576

    Article  Google Scholar 

  4. Davies JD (1968) A modified splitting test for concrete specimens. Mag Concr Res 20(64):183–186

    Article  Google Scholar 

  5. Zain MFM, Mahmud HB, Ilham A, Faizal M (2002) Prediction of splitting tensile strength of high-performance concrete. Cem Concr Res 32(8):1251–1258

    Article  Google Scholar 

  6. Choi Y, Yuan RL (2005) Experimental relationship between splitting tensile strength and compressive strength of GFRC and PFRC. Cem Concr Res 35(8):1587–1591

    Article  Google Scholar 

  7. Rocco C, Guinea GV, Planas J, Elices M (1999) Size effect and boundary conditions in the Brazilian test: theoretical analysis. Mater Struct 32(6):437–444

    Article  Google Scholar 

  8. Parra C, Valcuende M, Gómez F (2011) Splitting tensile strength and modulus of elasticity of self-compacting concrete. Constr Build Mater 25(1):201–207

    Article  Google Scholar 

  9. Özcan F (2012) Gene expression programming based formulations for splitting tensile strength of concrete. Constr Build Mater 26(1):404–410

    Article  Google Scholar 

  10. Cifuentes H, Karihaloo BL (2013) Determination of size-independent specific fracture energy of normal-and high-strength self-compacting concrete from wedge splitting tests. Constr Build Mater 48:548–553

    Article  Google Scholar 

  11. Wang HT, Wang LC (2013) Experimental study on static and dynamic mechanical properties of steel fiber reinforced lightweight aggregate concrete. Constr Build Mater 38:1146–1151

    Article  Google Scholar 

  12. İrhan B, Ožbolt J, Ruta D (2015) 3D finite element simulations of high velocity projectile impact [J]. Int J Solids Struct 72:38–49

    Article  Google Scholar 

  13. Ožbolt J, Bede N, Sharma A et al (2015) Dynamic fracture of concrete L-specimen: experimental and numerical study[J]. Eng Fract Mech 148:27–41

    Article  Google Scholar 

  14. Bede N, Ožbolt J, Sharma A et al (2015) Dynamic fracture of notched plain concrete beams: 3D finite element study [J]. Int J Impact Eng 77:176–188

    Article  Google Scholar 

  15. Dhanasekar M, Page AW, Kleeman PW (1985) The failure of brick masonry under biaxial stresses. ICE Proc 79(2):295–313

    Google Scholar 

  16. Ince R (2012) Determination of concrete fracture parameters based on peak-load method with diagonal split-tension cubes. Eng Fract Mech 82:100–114

    Article  Google Scholar 

  17. Cai M, Kaiser PK (2004) Numerical simulation of the Brazilian test and the tensile strength of anisotropic rocks and rocks with pre-existing cracks. Int J Rock Mech Min Sci 41:478–483

    Article  Google Scholar 

  18. López CM, Carol I, Aguado A (2008) Meso-structural study of concrete fracture using interface elements. II: compression, biaxial and Brazilian test. Mater Struct 41(3):601–620

    Article  Google Scholar 

  19. Li D, Wong LNY (2013) The Brazilian disc test for rock mechanics applications: review and new insights. Rock Mech Rock Eng 46(2):269–287

    Article  Google Scholar 

  20. Wang QZ, Jia XM, Kou SQ, Zhang ZX, Lindqvist PA (2004) The flattened Brazilian disc specimen used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: analytical and numerical results. Int J Rock Mech Min Sci 41(2):245–253

    Article  Google Scholar 

  21. Dave EV, Braham AF, Buttlar WG, Paulino GH (2011) Development of a flattened indirect tension test for asphalt concrete. J Test Eval 39(3):1–8

    Google Scholar 

  22. ISRM (1978) Suggested methods for the quantitative description of discontinuities in rock masses. Int J Rock Mech Min Sci Geomech Abstr 15:319–368

    Article  Google Scholar 

  23. Yu Y, Zhang J, Zhang J (2009) A modified Brazilian disk tension test. Int J Rock Mech Min Sci 46(2):421–425

    Article  Google Scholar 

  24. Chen X, Wu S, Zhou J (2014) Experimental study on dynamic tensile strength of cement mortar using split Hopkinson pressure bar technique. ASCE J Mater Civ Eng 26(6):04014005

    Article  Google Scholar 

  25. Tedesco JW, Ross CA, Brunair RM (1989) Numerical analysis of dynamic split cylinder tests. Comput Struct 32(3):609–624

    Article  Google Scholar 

  26. Feng KN, Ruan D, Pan Z, Collins F, Bai Y, Wang CM, Duan WH (2014) Effect of strain rate on splitting tensile strength of geopolymer concrete. Mag Concr Res 66(16):825–835

    Article  Google Scholar 

  27. Luo X, Xu J (2013) Dynamic splitting-tensile testing of highly fluidised geopolymer concrete. Mag Concr Res 65(14):837–843

    Article  Google Scholar 

  28. Lambert DE, Ross CA (2000) Strain rate effects on dynamic fracture and strength. Int J Impact Eng 24(10):985–998

    Article  Google Scholar 

  29. Wang QZ, Li W, Xie HP (2009) Dynamic split tensile test of flattened Brazilian disc of rock with SHPB setup. Mech Mater 41(3):252–260

    Article  Google Scholar 

  30. Zhou Z, Li X, Zou Y, Jiang Y, Li G (2014) Dynamic Brazilian tests of granite under coupled static and dynamic loads. Rock Mech Rock Eng 47(2):495–505

    Article  Google Scholar 

  31. Zhou YX, Xia K, Li XB, Li HB, Ma GW, Zhao J, Zhou ZL, Dai F (2012) Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int J Rock Mech Min Sci 49:105–112

    Article  Google Scholar 

  32. Chen X, Wu S, Zhou J, Chen Y, Qin A (2013) Effect of testing method and strain rate on stress-strain behavior of concrete. ASCE J Mater Civ Eng 25:1752–1761

    Article  Google Scholar 

  33. Dai F, Huang S, Xia K, Tan Z (2010) Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar. Rock Mech Rock Eng 43(6):657–666

    Article  Google Scholar 

  34. Chen CS, Pan E, Amadei B (1998) Determination of deformability and tensile strength of anisotropic rock using Brazilian tests. Int J Rock Mech Min Sci 35(1):43–61

    Article  Google Scholar 

  35. Hao Y, Hao H (2013) Dynamic compressive behaviour of spiral steel fibre reinforced concrete in split Hopkinson pressure bar tests. Constr Build Mater 48:521–532

    Article  Google Scholar 

  36. Amin A, Foster SJ, Muttoni A (2015) Derivation of the σ–w relationship for SFRC from prism bending tests. Struct Concr 16(1):93–105

    Article  Google Scholar 

  37. Hong L, Gu X, Lin F (2014) Influence of aggregate surface roughness on mechanical properties of interface and concrete. Constr Build Mater 65:338–349

    Article  Google Scholar 

  38. Zhou Z, Zou Y, Li X, Jiang Y (2013) Stress evolution and failure process of Brazilian disc under impact. J Centr South Univ 20:172–177

    Article  Google Scholar 

  39. Al-Salloum Y, Almusallam T, Ibrahim SM, Abbas H, Alsaved S (2015) Rate dependent behavior and modeling of concrete based on SHPB experiments. Cement Concr Compos 55:34–44

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this research was provided by the Natural Science Foundation of Jiangsu Province (Grant No. BK20150820) and the China Postdoctoral Science Foundation (Grant No. 2015M571656) granted to the first author Xudong Chen. The authors would like to express their great gratitude to the reviewers and editors for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xudong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Ge, L., Zhou, J. et al. Dynamic Brazilian test of concrete using split Hopkinson pressure bar. Mater Struct 50, 1 (2017). https://doi.org/10.1617/s11527-016-0885-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-016-0885-6

Keywords

Navigation