Skip to main content

Advertisement

Log in

Encapsulated Phase-Change Materials as additives in cementitious materials to promote thermal comfort in concrete constructions

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Energy efficiency in buildings has been a hot topic in recent years and the demand for alternatives regarding heat storage and thermal insulation is high. Materials with a large thermal mass like concrete can be optimized in terms of heat capacity. Useful for this purpose are Phase-Change Materials (PCMs), which show a high heat of fusion with a melting point within the ambient temperature range. In this paper, the effect of encapsulated PCMs on the thermal behavior and setting process of mortar at early age, and on the strength and thermal behavior of hardened mortar were studied. Such hardened PCM-mortar warms up more gradually and expands the thermal comfort in buildings. PCMs delay the setting process and cause a shift of the corresponding heat of hydration peak and reduce the strength. However, the strength remains high enough for many applications. A possible application was studied, related to thermal cracking of insulated concrete sandwich panels, where the encapsulated PCMs show an influence on the thermal properties in a positive way as they reduce strains. PCMs are innovative and promising materials to use in future applications of concrete structures to promote thermal comfort and to reduce thermal cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

PCMs:

Phase-Change Materials

PMMA:

Polymethylmethacrylate

MF:

Melamine formaldehyde

References

  1. Baetens R, Jelle BP, Gustavsend A (2010) Phase change materials for building applications: a state-of-the-art review. Energy Build 42(9):1361–1368. doi:10.1016/j.enbuild.2010.03.026

    Article  Google Scholar 

  2. Bentz DP, Turpin R (2007) Potential applications of phase change materials in concrete technology. Cem Concr Compos 29(7):527–532. doi:10.1016/j.cemconcomp.2007.04.007

    Article  Google Scholar 

  3. Castellón C, Medrano M, Roca J, Nogués M, Castell A, Cabeza LF (2007) Use of microencapsulated phase change materials in building applications. Build X 48:1–7

    Google Scholar 

  4. Costache MC, Wang D, Heidecker MJ, Manias E, Wilkie CA (2006) The thermal degradation of poly(methyl methacrylate) nanocomposites with montmorillonite, layered double hydroxides and carbon nanotubes. Polym Adv Technnol 17(4):208–272. doi:10.1002/pat.697

    Google Scholar 

  5. Delgado M, Lázaro A, Mazo J, Zalba B (2012) Review on phase change material emulsions and microencapsulated phase change material slurries: materials, heat transfer studies and applications. Renew Sust Energy Rev 16(1):253–273. doi:10.1016/j.rser.2011.07.152

    Article  Google Scholar 

  6. Entrop AG, Brouwers HJH, Reinders AHME (2011) Experimental research on the use of micro-encapsulated phase change materials to store solar energy in concrete floors and to save energy in Dutch houses. Sol Energy 85(5):1007–1020

    Article  Google Scholar 

  7. Gruyaert E, Van Tittelboom K, De Backer P, Moerman W, Dekeyser B, De Belie N (2013) Self-healing of thermal cracks in Sandwich panels. In: De Belie N et al (ed) Proceedings of the 4th international conference on self healing materials, Ghent, pp 406–413, 16–20 June 2013. ISBN: 9789082073706

  8. Hunger M, Entrop AG, Mandilaras I, Brouwers HJH, Founti M (2009) The behavior of self-compacting concrete containing micro-encapsulated phase change materials. Cem Concr Compos 31(10):731–743. doi:10.1016/j.cemconcomp.2009.08.002

    Article  Google Scholar 

  9. Kandare E, Deng H, Wang D, Hossenlopp J (2006) Thermal stability and degradation kinetics of poly(methyl methacrylate)/layered copper hydroxy methacrylate composites. Polym Adv Technol 17(4):312–319. doi:10.1002/pat.681

    Article  Google Scholar 

  10. Mehling H, Cabeza LF (2008) Heat and cold storage with PCM: an up to date introduction into basics and applications. Springer, Berlin

    Google Scholar 

  11. Meshgin P, Xi Y (2012) Effect of phase change materials on properties of concrete. ACI Mater J 109(1):71–80. doi:10.14359/51683572

    Google Scholar 

  12. Peippo K, Hauranen P, Lund PD (1991) A multicomponent PCM wall optimized for passive solar heating. Energy Build 17(4):259–270. doi:10.1016/0378-7788(91)90009-R

    Article  Google Scholar 

  13. Ravikumar M, Srinivasan PSS (2008) Phase change material as a thermal energy storage material for cooling of building. J Theor Appl Inf Technol 4(6):503–511

    Google Scholar 

  14. Reinhardt HW, Grosse CU (2004) Continuous monitoring of setting and hardening of mortar and concrete. Constr Build Mater 18(3):145–154. doi:10.1016/j.conbuildmat.2003.10.002

    Article  Google Scholar 

  15. Schossig P, Henning H-M, Gschwander S, Haussmann T (2005) Micro-encapsulated phase-change materials integrated into construction materials. Sol Energy Mater Sol Cells 89(2–3):297–306. doi:10.1016/j.solmat.2005.01.017

    Article  Google Scholar 

  16. Silakhori M, Naghavi MS, Metselaar HSC, Mahlia TMI, Fauzi H, Mehrali M (2013) Accelerated thermal cycling test of microencapsulated paraffin wax/polyaniline made by simple preparation method for solar thermal energy storage. Materials 6(5):1608–1620. doi:10.3390/ma6051608

    Article  Google Scholar 

  17. Snoeck D, Steuperaert S, Van Tittelboom K, Dubruel P, De Belie N (2012) Visualization of water penetration in cementitious materials with superabsorbent polymers by means of neutron radiography. Cem Concr Res 42(8):1113–1121. doi:10.1016/j.cemconres.2012.05.005

    Article  Google Scholar 

  18. Snoeck D, Van Tittelboom K, Steuperaert S, Dubruel P, De Belie N (2014) Self-healing cementitious materials by the combination of microfibres and superabsorbent polymers. J Intell Mater Syst Struct 25(1):13–24. doi:10.1177/1045389X12438623

    Article  Google Scholar 

  19. Tzvetkov G, Graf B, Wiegner R, Raabe J, Quitmann C, Fink R (2008) Soft X-ray spectromicroscopy of phase-change microcapsules. Micron 39(3):275–279. doi:10.1016/j.micron.2007.04.002

    Article  Google Scholar 

  20. Zalba B, Marín JM, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 23(3):251–283. doi:10.1016/S1359-4311(02)00192-8

    Article  Google Scholar 

Download references

Acknowledgments

As a Research Assistant of the Research Foundation-Flanders (FWO-Vlaanderen), D. Snoeck wants to thank the foundation for their financial support. BASF and Devan Chemicals NV are also gratefully acknowledged for providing PCMs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. De Belie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snoeck, D., Priem, B., Dubruel, P. et al. Encapsulated Phase-Change Materials as additives in cementitious materials to promote thermal comfort in concrete constructions. Mater Struct 49, 225–239 (2016). https://doi.org/10.1617/s11527-014-0490-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-014-0490-5

Keywords

Navigation