Skip to main content
Log in

Fiber distribution and orientation in UHP-FRC beams and their effect on backward analysis

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

In this study 23 ultra-high performance fiber reinforced concrete (UHP-FRC) notched beams were tested in order to investigate the effect of fiber orientation and distribution on the bending behavior. Due to the small fiber diameter and high fiber volume fraction used in UHP-FRC, the number of fibers crossing a 150 × 150 mm (6 × 6 in.) beam section can be as high as 26,000. An opto-analytical method was used to investigate the number and orientation of the fibers near the critical crack in each test beam. For the casting method used, which was in accordance with the recommendation of Association Francaise de Genie Civil (AFGC) and Service d’etudes techniques des routes et autoroutes (SETRA), a high degree of uniformity in fiber distribution and orientation was found over the beam cross section. Based on the analytically determined fiber orientation and distribution, shape functions were derived that take into account variations over the beam height. The proposed shape functions were incorporated in a backward analysis of the results from bending tests to estimate the uniaxial tensile behavior of the UHP-FRC used. The sensitivity of the backwardly calculated tensile behavior of UHP-FRC to variations in fiber density and orientation was evaluated. Based on the bending test results of the notched beam specimens, and for the casting method used in this research, the influence of these variations on the backwardly calculated tensile strength was found to be small, with a maximum stress variation of ~5 % for any given crack width.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Association Francaise de Genie Civil (AFGC)–Service d’etudes techniques des routes et autoroutes (SETRA) (2002) Bétons fibrés à ultra-hautes performances, ultra high performance fibrereinforced concretes, recommandations provisoires. Interim Recommendations, France

  2. Aveston J, Kelly A (1973) Theory of multiple fracture of fibrous composites. J Mater Sci 8:352–362

    Article  Google Scholar 

  3. de Oliveira e Sousa JLA, Gettu R (2006) Determining the tensile stress-crack opening curve of concrete by inverse analysis. J Eng Mech 132(2):141–148

    Article  Google Scholar 

  4. Dupont D (2003) Modelling and experimental validation of the constitutive law (σ − ε) and cracking behaviour of steel fibre reinforced concrete. Ph.D. Thesis, Catholic University of Leuven, Belgium

  5. Dupont D, Vandewalle L (2004) Distribution of steel fibers in rectangular sections. Cem Concr Compos 27:391–398

    Article  Google Scholar 

  6. Edgington J, Hannant DJ (1972) Steel fibre reinforced concrete, the effect on fibre orientation compaction by vibration. Mater Struct 5:41–44

    Google Scholar 

  7. Groeger J (2007) Entwicklung eines rechnergestuetzten Verfahrens zur Ermittlung von Faserorientierungsbeiwerten, Großer Uebungsbeleg, University of Leipzig, unpublished

  8. Grünewald S (2004) Performance-based design of self-compacting fibre reinforced concrete. Ph.D. Thesis, Delft University of Technology

  9. Hilsdorf HK, Brameshuber W, Kottas R (1985) Abschlußbericht zum Forschungsvorhaben: Weiterentwicklung und Optimierung der Materialeigenschaften faserbewehrten Betons und Spritzfaserbetons als Stabilisierungselemente der Felssicherung. University of Karlsruhe, German

  10. Hong KN, Kang ST, Kim SW, Park JJ, Han SH (2010) Material properties of air-cured ultra-high-performance steel-fiber-reinforced concrete at early ages. Int J Phys Sci 5(17):2622–2634

    Google Scholar 

  11. Hordijk DA (1991) Local approach to fatigue of concrete. Ph.D. Thesis, Department of Concrete Structures, Faculty of Civil Engineering, Delft University of Technology

  12. Kameswara Rao CVS (1979) Effectiveness of random fibres in composites. Cem Concr Res 9:685–693

    Article  Google Scholar 

  13. Kitsutaka Y (1995) Fracture parameters for concrete based on poly-linear approximation analysis of tension softening diagram (FRAMCOS-2). Aedification, Freiburg, pp 199–208

    Google Scholar 

  14. Kooiman A (2000) Modelling steel fibre reinforced concrete for structural design. Ph.D. Thesis, Department of Structural and Building Engineering, Delft University of Technology

  15. Kurihara N, Kunieda M, Kamada T, Uchida Y, Rokugo K (2000) Tension softening diagrams and evaluation of properties of steel fiber reinforced concrete. Eng Fract Mech 65(2–3):235–245

    Article  Google Scholar 

  16. Li VC (1991) Post-crack scaling relations for fiber-reinforced cementitious composties. J Mater Civ Eng 4(1):41–57

    Article  Google Scholar 

  17. Li VC, Leung C (1992) Steady state and multiple cracking of short random fiber composites. J Eng Mech 188(11):2246–2264

    Article  Google Scholar 

  18. Li VC, Wang Y, Backer S (1991) A micromechanical model of tension-softening and bridging toughening of short random fiber reinforced brittle matrix composites. J Mech Phys Solids 39(5):607–625

    Article  Google Scholar 

  19. Li VC, Stang H, Krenchel H (1993) Micromechanics of crack bridging in fiber reinforced concrete. J Mater Struct 26:486–494

    Article  Google Scholar 

  20. Markovic I (2006) High-performance hybrid-fibre concrete: development and Utilisation. Ph.D. Thesis, Delft University of Technology

  21. Rilem TC 162-TDF (2000) Recommendation of RILEM TC 162-TDF: test and design methods for steel fibre reinforced concrete. Mater Struct 33:3–5

    Article  Google Scholar 

  22. Roelfstra PE, Wittmann FH (1986) Numerical method to link strain softening with failure of concrete. In: Wittmann FH (ed) Fracture toughness and fracture energy. Elsevier, London, pp 163–175

    Google Scholar 

  23. Schönlin K (1988) Ermittlung der Orientierung, Menge und Verteilung der Fasern in faserbewehrtem Beton. Beton- und Stahlbetonbau 83(6):168–171

    Article  Google Scholar 

  24. Schumacher P (2006) Rotation capacity of self-compacting steel fiber reinforced concrete. Ph.D. Thesis, Delft University of Technology

  25. Soranakom C, Mobasher B (2007) Flexural modeling of strain softening and strain hardening fiber reinforced concrete In: Reinhardt HW, Naaman AE (eds) High performance fiber reinforced cement composites: HPFRCC 5. RILEM Proceedings, Pro. 53, S.A.R.L., Cachan, France, pp 155–164

  26. Soroushian P, Lee C-D (1990) Distribution and orientation of fibres in steel fiber reinforced concrete. ACI Mater J 87:433–439

    Google Scholar 

  27. Stähli P, Custer R, Van Mier JG (2007) Fibre orientation and fibre distribution of fibre reinforced concrete. Annual report, ETH Zurich

  28. Stang H, Olesen JF (1998) On the interpretation of bending tests on frc-materials In: Mihashi H, Rokugo K (eds) Fracture mechanics of concrete structures, Proceedings of FramCos-3, vol 1, Freiburg, pp 511–520

  29. Thomée B (2005) Physikalisch nichtlineare Berechnung von Stahlfaserbetonkonstruk-tionen. Ph.D. Thesis, Technische Universität München

  30. Tue N, Henze S, Kuechler M, Schenck G, Wille K (2007) Ein optoanalytisches Verfahren zur Bestimmung der Faserverteilung und -orientierung in stahlfaserverstaerktem UHFB. Beton- und Stahlbetonbau 10:674–680

    Article  Google Scholar 

  31. Uchida Y, Kurihara N, Rokugo K, Koyanagi W (1995) Determination of tension softening diagrams of various kinds of concrete by means of numerical analysis, FRAMCOS-2. Aedification, Freiburg, pp 17–30

    Google Scholar 

  32. Villmann B, Villmann T, Slowik V (2004) Determination of softening curves by backward analyses of experiments and optimization using an evolutionary algorithm. Fracture Mechanics of Concrete Structures, Vail

    Google Scholar 

  33. Villmann B, Bretschneider N, Slowik V, Michel A (2006) Bestimmung von Materialeigenschaften zementgebundener Werkstoffe mittels inverser Analyse. Bautechnik 83(11):747–753

    Article  Google Scholar 

  34. Wille K (2008) Entwicklung und Beschreibung des Tragverhaltens neuartiger Verbund-konstruktionen unter Verwendung eines flächigen Bewehrungselementes. Ph.D. Thesis, University of Leipzig, Band 15, ISBN 978-3-8370-1029-9, German

  35. Wille K, Parra-Montesinos GJ (2012) Effect of beam size, casting method and support conditions on the flexural behavior of ultra-high performance fiber reinforced concrete. ACI Mater J 109(3):379–388

    Google Scholar 

Download references

Acknowledgments

This work was supported by a fellowship within the Postdoc-Programme of the German Academic Exchange Service (DAAD). The opinions expressed in this paper are those of the authors and do not necessarily reflect the views of the sponsor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay Wille.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wille, K., Tue, N.V. & Parra-Montesinos, G.J. Fiber distribution and orientation in UHP-FRC beams and their effect on backward analysis. Mater Struct 47, 1825–1838 (2014). https://doi.org/10.1617/s11527-013-0153-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-013-0153-y

Keywords

Navigation