Skip to main content
Log in

Accelerated weathering of cementitious matrix for the development of an accelerated laboratory test of biodeterioration

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Cement based materials are porous, may contain organic adjuvants, and thus possesses an important primary bioreceptivity. To preserve constructions from fungal colonization and to act efficiently against fungal biodeterioration, it is necessary to have a better understanding of biodeterioration mechanisms and its effects on materials properties. An accelerated laboratory test which allows us to compare the growth of three fungal strains and the aesthetic biodeterioration of a cementitious matrix was developed. As the surface pH of the fresh cement specimen is too high to allow fungal growth (pH ~12), accelerating weathering of the matrix, consisting of the combination of carbonation and leaching, was performed to reduce the matrix alkalinity. XRD analyses and SEM observations pointed out that the matrix surface is progressively covered by a calcium carbonate layer as the weathering increases. Results point out that the microbial growth occurs on matrix with a surface composition more like a limestone than a cementitious one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Allsopp C, Allsopp D, Gaylarde CC (2004) Introduction to biodeterioration, 2nd edn. Cambridge University Press, Cambridge. ISBN 0-521-52887-9

  2. Anstice DJ, Page CL, Page MM (2005) The pore solution phase of carbonated cement pastes. Cem Concr Res 35:377–383

    Article  Google Scholar 

  3. Barberousse H (2006) Etude de la diversité des algues et des cyanobactéries colonisant les revêtements de façade en France et recherche des facteurs favorisant leur implantation. PhD thesis, Muséum National d’Histoire Naturelle, pp 186

  4. Barbieri Albert B (2002) Altération de matrices cimentaires par des eaux de pluie et des eaux sulfatées: approche expérimentale et thermodynamique. PhD thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne and Institut National Polytechnique de Grenoble, pp 294

  5. Burford EP, Fomina M, Gadd GM (2003) Fungal involvement in bioweathering and biotransformation of rocks and minerals. Miner Mag 67:1127–1155

    Article  Google Scholar 

  6. de Hoog GS (1993) Evolution of black yeasts: possible adaptation to human host. Antonie van Leeuwenhoek 63:105–109

    Article  Google Scholar 

  7. de la Torre MA, Gomez-Alarcon G, Melgarejo P, Saiz-Jimenez C (1991) Fungi in weathered sandstone from Salamanca cathedral, Spain. Sci Total Environ 107:159–168

    Article  Google Scholar 

  8. De Leo F, Urzì C (2003) Fungal colonization on treated and untreated stone surfaces. In: Saiz-Jimenez (ed) Molecular biology and cultural heritage. Swets & Zeitlinger BV, Lisse, pp 213–218

    Google Scholar 

  9. De Leo F, Urzì C, de Hoog GS (1999) Two Coniosporium species from rock surfaces. Stud Mycol 43:70–79

    Google Scholar 

  10. de Moraes Pinheiro SM, Ribas Silva M (2003) Alteration of concrete microstructure by biodeterioration mechanisms. In: Ribas Silva M (ed) Proceedings pro044: microbial impact on building materials, Lisbon, Portugal, pp 48–57

  11. De Muynck W, Maury Ramirez A, De Belie N, Verstraete W (2009) Evaluation of strategies to prevent algal fouling on white architectural and cellular concrete. Int Biodeterior Biodegrad 63:679–689

    Article  Google Scholar 

  12. Devarajan A, Khadar MA, Chattopadhay K (2007) Effect of ball milling on chemically synthesized nanoparticles of CaCO3. Mater Sci Eng A 452–453:395–400

    Google Scholar 

  13. Dewaele PJ, Reardon EJ, Dayal R (1991) Permeability and porosity changes associated with cement grout carbonation. Cem Concr Res 21:441–454

    Article  Google Scholar 

  14. Diakumaku E, Gorbushina AA, Krumbein WE, Panina L, Soukharjevski S (1995) Black fungi in marble and limestones—an aesthetical, chemical and physical problem for the conservation of monuments. Sci Total Environ 167:295–304

    Article  Google Scholar 

  15. Diamond S (1976) Cement paste microstructure—an overview at several levels. In: Cement and Concrete Association (eds) Proceeding of the conference on hydraulic cement paste: their structure and properties, Sheffield University, pp 2–30

  16. Diamond S (2000) Mercury porosimetry: an inappropriate method for the measurement of pore size distributions in cement-based materials. Cem Concr Res 30:1517–1525

    Article  Google Scholar 

  17. Dornieden Th, Gorbushina AA, Krumbein WE (2000) Biodecay of cultural heritage as a space/time-related ecological situation—an evaluation of a series of studies. Int Biodeterior Biodegrad 46:261–270

    Article  Google Scholar 

  18. Dubosc A (2000) Etude du développement de salissures biologiques sur les parements en béton: mise au point d’essais accélérés de vieillissement. PhD thesis, Institut National des Sciences Appliquées de Toulouse, pp 250

  19. Escadeillas G, Bertron A, Blanc G, Dubosc A (2007) Accelerated testing of biological stain growth on external concrete walls. Part 1: Development of the growth tests. Mater Struct 40:1061–1071

    Article  Google Scholar 

  20. Farcas F, Touze P (2001) La spectrométrie infrarouge à transformée de Fourier (IRTF): Une méthode intéressante pour la caractérisation des ciments. Bull Lab Ponts Chaussées 230:77–88

    Google Scholar 

  21. Fattuhi NI (1988) Concrete carbonation as influenced by curing regime. Cem Concr Res 18:426–430

    Article  Google Scholar 

  22. Faucon P, Adenot F, Jorda M, Cabrillac R (1997) Behaviour of crystallised phases of Portland cement upon water attack. Mater Struct 30:480–485

    Article  Google Scholar 

  23. Faucon P, Adenot F, Jacquinot JF, Petit JC, Cabrillac R, Jorda M (1998) Long-term behaviour of cement pastes used for nuclear waste disposal: review of physico-chemical mechanisms of water degradation. Cem Concr Res 28:847–857

    Article  Google Scholar 

  24. Garcia-Valles M, Vandrell-Saz M, Krumbein WE, Urzì C (1997) Coloured mineral coatings on monument surfaces as a result of biomineralization: the case of the Tarragona cathedral (Catalonia). Appl Geochem 12:255–266

    Article  Google Scholar 

  25. Garrabrants AC, Sanchez F, Kosson DS (2004) Changes in constituent equilibrium leaching and pore water characteristics of a Portland cement mortar as a result of carbonation. Waste Manag 24:19–36

    Article  Google Scholar 

  26. Gervais C (1999) Evaluation environnementale des perspectives de valorisation en BTP de scories de première fusion de plomb et de zinc. PhD thesis, Institut National des Sciences Appliquées de Lyon, pp 218

  27. Gervais C, Garrabrants AC, Sanchez F, Barna R, Moszkowicz P, Kosson DS (2004) The effects of carbonation and drying during intermittent leaching on the release of inorganic constituents from a cement-based matrix. Cem Concr Res 34:119–131

    Article  Google Scholar 

  28. Ghosh SN (2001) IR spectroscopy. In: Ramashandran VS, Beaudoin JJ (eds) Handbook of analytical techniques in concrete science and technology—principles, techniques, and applications. William Andrew Publishing/Noyes, Ottawa, Canada, pp 174–204

    Chapter  Google Scholar 

  29. Glasser FP, Marchand J, Samson E (2008) Durability of concrete—degradation phenomena involving detrimental chemical reactions. Cem Concr Res 38:226–246

    Article  Google Scholar 

  30. Gorbushina AA (2007) Life on rocks. Environ Microbiol 9(7):1613–1631

    Article  Google Scholar 

  31. Guillitte O (1995) Bioreceptivity: a new concept for building ecology studies. Sci Total Environ 167:215–220

    Article  Google Scholar 

  32. Guillon E (2004) Durabilite des materiaux cimentaires—Modelisation de l'influence des equilibres physico-chimiques sur la microstructure et les proprietes mecaniques residuelles. PhD thesis, Ecole Normale Superieures de Cachan, pp 154

  33. Haga K, Sutou S, Hironaga M, Tanaka S, Nagasaki S (2005) Effects of porosity on leaching of Ca from hardened ordinary Portland cement paste. Cem Concr Res 35:1764–1775

    Article  Google Scholar 

  34. Hidalgo A, Petit S, Domingo C, Alonso C, Andrade C (2007) Microstructural characterization of leaching effects in cement pastes due to neutralisation of their alkaline nature: part I: Portland cement pastes. Cem Concr Res 37:63–70

    Article  Google Scholar 

  35. Khatib JM, Mangat PS (2003) Porosity of cement paste cured at 45°C as a function of location relative to casting position. Cem Concr Compos 25:97–108

    Article  Google Scholar 

  36. Klemm WA, Berger RL (1972) Accelerated curing of cementitious systems by carbon dioxide: part I. Portland cement. Cem Concr Res 2:567–576

    Article  Google Scholar 

  37. Lange LC, Hills CD, Poole AB (1997) Effect of carbonation on properties of blended and non-blended cement solidified waste forms. J Hazard Mater 52:193–212

    Article  Google Scholar 

  38. Macias A, Kindness A, Glasser FP (1997) Impact of carbon dioxide on the immobilization potential of cemented wastes: chromium. Cem Concr Res 27:215–225

    Article  Google Scholar 

  39. Mollah MYA, Hess TR, Tsai YN, Cocke DL (1993) An FTIR and XPS investigations of the effects of carbonation on the solidification stabilization of cement-based systems-Portland type V with zinc. Cem Concr Res 23:773–784

    Article  Google Scholar 

  40. Mollah MYA, Palta P, Hess TR, Vempati RK, Cocke DL (1995) Chemical and physical effects of sodium lignosulfonate superplasticizer on the hydration of Portland cement and solidification/stabilization consequences. Cem Concr Res 25:671–682

    Article  Google Scholar 

  41. Mollah MYA, Lu F, Cocke DL (1998) An X-ray diffraction (XRD) and Fourier transform infrared spectroscopic (FT-IR) characterization of the speciation of arsenic (V) in Portland cement type-V. Sci Total Environ 224:57–68

    Article  Google Scholar 

  42. Mollah MYA, Yu M, Schennach R, Cocke DL (2000) A Fourier transform infrared spectroscopic investigation of the early hydration of Portland cement and the influence of sodium lignosulfonate. Cem Concr Res 30:267–273

    Article  Google Scholar 

  43. Mollah MYA, Kesmez M, Cocke DL (2004) An X-ray diffraction (XRD) and Fourier transform infrared spectroscopic (FT-IR) investigation of the long-term effect on the solidification/stabilization (S/S) of arsenic(V) in Portland cement type-V. Sci Total Environ 325:255–262

    Article  Google Scholar 

  44. Ngala VT, Page CL (1997) Effects of carbonation on pore structure and diffusional properties of hydrated cement pastes. Cem Concr Res 27:995–1007

    Article  Google Scholar 

  45. Nielsen KF, Holm G, Uttrup LP, Nielsen PA (2004) Mould growth on building materials under low water activities. Influence of humidity and temperature on fungal growth and secondary metabolism. Int Biodeterior Biodegrad 54:325–336

    Article  Google Scholar 

  46. Oshima A, Matsui I, Yuasa N, Henmi Y (1999) A study on growth of fungus and algae on mortar. Trans Jpn Concr Inst 21:173–178

    Google Scholar 

  47. Saiz-Jimenez C (1997) Biodeterioration vs biodegradation: the role of microorganisms in the removal of pollutants deposited on historic buildings. Int Biodeterior Biodegrad 40:225–232

    Article  Google Scholar 

  48. Sanchez F, Gervais C, Garrabrants AC, Barna R, Kosson DS (2002) Leaching of inorganic contaminants from cement-based waste materials as a result of carbonation during intermittent wetting. Waste Manag 22:249–260

    Article  Google Scholar 

  49. Shirakawa MA, Beech IB, Tapper R, Cinotto MA, Gambale W (2003) The development of a method to evaluate bioreceptivity of indoor mortar plastering to fungal growth. Int Biodeterior Biodegrad 51:83–92

    Article  Google Scholar 

  50. Simpson LJ (1998) Electrochemically generated CaCO3 deposits on iron studied with FTIR and Raman spectroscopy. Electrochim Acta 43:2543–2547

    Article  Google Scholar 

  51. Sterflinger K (1995) Geomicrobiological investigations on the alteration of marble monuments by dematiaceous fungi (Sanctuary of Delos, Cyclades, Greece). PhD thesis, University of Oldenburg, pp 138

  52. Sterflinger K, Krumbein WE (1997) Dematiaceous fungi as a major agent for biopitting Mediterranean marbles and limestones. Geomicrobiol J 14(3):219–230

    Google Scholar 

  53. Thiery M (2005) Modélisation de la carbonatation atmosphérique des matériaux cimentaires; Prise en compte des effets cinétiques et des modifications microstructurales et hydriques. PhD thesis, Ecole Nationale des Ponts et Chaussées, pp 304

  54. Thiery M, Villain G, Dangla P, Platret G (2007) Investigation of the carbonation front shape on cementitious materials: effects of the chemical kinetics. Cem Concr Res 37:1047–1058

    Article  Google Scholar 

  55. Urzì C, De Leo F (2001) Sampling with adhesive tape strips: an easy and rapid method to monitor microbial colonization on monument surfaces. J Microbiol Meth 44:1–11

    Article  Google Scholar 

  56. Urzì C, De Leo F (2007) Evaluation of the efficiency of water-repellent and biocide compounds against microbial colonization of mortars. Int Biodeterior Biodegrad 60:25–34

    Article  Google Scholar 

  57. Urzì C, Realini M (1998) Colour changes of Notos calcareous sandstone as related to its colonisation by microorganisms. Int Biodeterior Biodegrad 42:45–54

    Article  Google Scholar 

  58. Urzì C, De Leo F, de Hoog GS, Sterflinger K (2000) Recent advances in the molecular biology and ecophysiology of meristematic fungi. In: Ciferri O, Tiano P, Mastromei G (eds) Proceeding of the international congress on microbes and art, pp 3–19

  59. Valls S, Vasquez E (2001) Accelerated carbonation of sewage sludge–cement–sand mortars and its environmental impact. Cem Concr Res 31:1271–1276

    Article  Google Scholar 

  60. Van Gerven T, Moors J, Dutre V, Vandecasteele C (2004) Effect of CO2 on leaching from a cement-stabilized MSWI fly ash. Cem Concr Res 34:1103–1109

    Article  Google Scholar 

  61. Van Gerven T, Van Baelen D, Dutre D, Vandecsteele C (2004) Influence of carbonation and carbonation methods on leaching of metals from mortars. Cem Concr Res 34:149–156

    Article  Google Scholar 

  62. Van Gerven T, Cornelis G, Vandoren E, Vandecasteele C (2007) Effects of carbonation and leaching on porosity in cement-bound waste. Waste Manag 27:977–985

    Article  Google Scholar 

  63. Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegrad 46:343–368

    Article  Google Scholar 

  64. Wiktor V, Grosseau P, Guyonnet R, Garcia-Diaz E (2006) Biodétérioration d’une matrice cimentaire par les champignons: influence du vieillissement accéléré sur le développement fongique. Matériaux Tech 94:507–515

    Article  Google Scholar 

  65. Wollenzien U, de Hoog GS, Krumbein WE, Urzì C (1995) On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. Sci Total Environ 167:287–294

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Patrick Dégrugilliers (Ecole des Mines de Douai, Civil Engineering Department) for the preparation of thin section. Authors acknowledge Clara Urzì and Filomena De Leo (Messina University, Department of Microbiology, Genetic and Molecular Sciences) for their precious help of the microbiology part of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginie Wiktor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiktor, V., Grosseau, P., Guyonnet, R. et al. Accelerated weathering of cementitious matrix for the development of an accelerated laboratory test of biodeterioration. Mater Struct 44, 623–640 (2011). https://doi.org/10.1617/s11527-010-9653-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-010-9653-1

Keywords

Navigation