Skip to main content
Log in

Chemical modelling of Alkali Silica reaction: Influence of the reactive aggregate size distribution

  • ORIGINAL ARTICLE
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This article presents a new model which aims at predicting the expansion induced by Alkali Silica Reaction (ASR) and describing the chemical evolution of affected concretes. It is based on the description of the transport and reaction of alkalis and calcium ions within a Relative Elementary Volume (REV). It takes into account the influence of the reactive aggregate size grading on ASR, i.e. the effect of the simultaneous presence of different sized reactive aggregates within concrete. The constitutive equations are detailed and fitted using experimental results. Results from numerical simulations are presented and compared with experiments.

Résumé

Cet article présente un modèle qui a pour but la prédiction du gonflement induit par la réaction alcali-silice et la description de l’évolution chimique des bétons affectés. Il est basé sur la description du transport et de la réaction des alcalins et des ions calcium dans un Volume Elémentaire Représentatif. Il permet notamment de tenir compte de l’influence de la granulométrie réactive, c′est-à-dire de l’influence de la présence simultanée de granulats réactifs de différentes tailles dans le béton. Les équations constitutives du modèle sont détaillées puis calées à partir de résultats expérimentaux. Les résultats des simulations numériques sont présentés et comparés aux valeurs expérimentales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α:

Function describing the equilibrium in solution between alkalis and calcium ions in presence of sufficient portlandite

d :

Isotropic and uniform damage within the Relative␣Elementary Volume

\(\bar{D}_i^a(X)\quad\bar{D}_i^{\rm hcp}(X)\) :

Homogenized diffusion coefficients for the ionic species X (calcium Ca␣and alkalis Na respectively) within and outside the reactive aggregate i respectively

ɛ asr0 :

Data for ASR inelastic strain evolution

ϕ i :

Volume fraction of the reactive aggregates of the granular class i

\(\bar{\Phi}_i(X)\) :

Flux of ions X penetrating all the reactive aggregates of the granular class i

γ X :

Davies activity coefficient for the ionic species X

I :

Ionic strength of the inner solution of concrete

k gi :

Damage parameter for the reactive aggregates i

M :

Mass of the aggregates (reactive and inert) for 1 m3 of concrete

n a i :

Number of reactive aggregates of the granular class i

\(\bar{\Pi}_i(\hbox{Ca})\) :

Sink term in the diffusion equation for the reactive aggregate i describing the dissolution/precipitation of portlandite

p SiO :

Percentage of reactive silica within the reactive aggregates

R i :

Mean radius of the reactive aggregates of the granular class i

R REV :

Radius of the Relative Elementary Volume

ρ:

Density of the aggregates (reactive and inert)

\(\bar{S}_i^{\rm reac}(X)\quad\bar{S}_i^{\rm hcp}(X)\) :

Sink terms of the diffusion equation within and outside the reactive aggregate i respectively

V a i :

Volume of the reactive aggregate of the granular class i

V p i :

Porous volume surrounding the reactive aggregates i available for the swelling of the reaction products

V gelmol :

Molar volume of the reaction products (gel and C–S–H)

V REV :

Volume of the Relative Elementary Volume

(X):

Chemical activity of the ionic species X

\(\overline{X}_i\) ( \(\overline{\hbox{Ca}}_i\quad\overline{\hbox{Na}}_i)\) :

Homogenized concentration of the ionic species X (calcium Ca and alkalis Na respectively) around the reactive aggregate i

z X :

Valence of the ion X

References

  1. Dent Glasser LS, Kataoka N (1981) The chemistry of alkali-aggregate reaction. Cement Concrete Res 11(1):1–9

    Article  Google Scholar 

  2. Poole AB (1992) Alkali silica reactivity mechanisms of gel formation and expansion. Proceedings of the 9th International conference on Alkali-Silica reaction in concrete (ICAAR), London, England, pp 782–789

  3. Dron G, Brivot F, Chaussadent D (1997) The mechanism of alkali-silica reaction. Proceedings of the 10th international congress of the chemistry of cement, 4iv074-8p, Göteborg, Sweden

  4. Lombardi J, Perruchot A, Massard P (2000) Experimental evaluation of composition and volume variability of Ca-Si gels, first products of alkali silica reaction (ASR). Proceedings of the 11th international conference on alkali-aggregate reaction in concrete (ICAAR), Québec City, Québec, pp 81–87

  5. Recommandations pour la prévention des désordres dus à l’alcali-réaction” (1994) Presses du Laboratoire Central des Ponts et Chaussées (in French), Paris, France

  6. Mather B (1999) How to make concrete that will not suffer deleterious alkali-silica reaction. Cement and Concrete Res 29:1277–1280

    Article  Google Scholar 

  7. Sellier A, Bournazel J-P, Mébarki A (1995) Une modélisation de l′alcali-réaction intégrant une description des phénomènes aléatoires locaux. RILEM Materials and Structures 28 (in French), pp 373–383

    Article  Google Scholar 

  8. Bažant ZP, Steffens A (2000) Mathematical model for kinetics of alkali-silica reaction in concrete. Cement Concrete Res 30:419–428

    Article  Google Scholar 

  9. Furusawa Y, Ohga H, Uomoto T (1994) An analytical study concerning prediction of concrete expansion due to alkali-silica reaction. Proceedings of the 3rd international conference on durability of concrete, Nice, France, pp 757–779

  10. Uomoto T, Furusawa Y, Ohga H (1992) A simple kinetics based model for predicting alkali-silica reaction. Proceedings of the 9th international conference on alkali-aggregate reaction in concrete (ICAAR), London, England, pp 1077–1084

  11. Xi Y, Suwito A, Wen X, Meyer C, Jin W (1999) Testing and modelling alkali-silica reaction and the associated expansion of concrete. Mechanics of quasi-brittle materials and structures, Ed. HERMES Science Publications, Paris, pp 217–232

  12. Guedon-Dubied J-S, Cadoret G, Durieux V, Martineau F, Fasseu P, Van Overbecke N (2000) Study of Tournai limestone in Antoing Cimescaut quarry, petrological, chemical and alkali-reactivity approach. Proceedings of the 11th international conference on alkali-aggregate reaction in concrete, Québec City, Québec, pp 335–344

  13. Poyet S (2003) Etude de la degradation des ouvrages en béton atteints par la réaction alcali-silice : approche expérimentale et modélisation numérique multi-échelles des dégradations dans un environnement hydro-chemo-mécanique variable. PhD thesis of the University of Marne la Vallée (in French), France, 237p

  14. Sellier A, Capra B (1997) Modélisation physico-chimique de la reaction alcali-granulats : apport au calcul des structures dégradées. Revue française de Génie Civil 1(3) (in French):445–481

    Google Scholar 

  15. Larive C, Laplaud A, Coussy O (2000) The role of water in alkali-silica reaction. Proceedings of the 11th international conference on alkali-silica reaction in concrete, Québec City, Québec, pp 61–69

  16. Multon S, Merliot E, Joly M, Toutlemonde F (2004) Water distribution in beams damaged by Alkali-Silica Reaction: global weighing and local gammadensitometry. Mat Struct 37(269):282–288

    Article  Google Scholar 

  17. Diamond S, Thaulow N (1974) Study of expansion due to ASR as conditioned by the grain size of the aggregate. Cement Concrete Res 4(4):591–607

    Article  Google Scholar 

  18. Hobbs DW, Gutteridge WA (1979) Particle size of aggregate and its influence upon the expansion caused by the alkali-silica reaction. Magazine Concrete Res 31(109):235–242

    Article  Google Scholar 

  19. Shehata MH, Thomas MDA (2000) The effect of fly ash composition on the expansion of concrete due to alkali–silica reaction. Cement Concrete Res 30:1063–1072

    Article  Google Scholar 

  20. Mu B, Li Z (2000) Mechanical properties and microstructures of alkali-silica reacted concrete with fly ash, silica fume and calcium nitrite salt. Concrete Sci Eng 2:2–7

    Google Scholar 

  21. Hasparyk NP, Monteiro PJM, Carasek H (2000) Effect of silica fume and rice husk on alkali-silica reaction. ACI Mater J 97:486–492

    Google Scholar 

  22. Gudmunsson G, Olafsson H (1999) Alkali-silica reactions and silica fume, 20 years of experience in Iceland. Cement Concrete Res 29:1289–1297

    Article  Google Scholar 

  23. Yu Q, Sawayama K, Sugita S, Shoya M, Isojima Y (1999) The reaction between rice husk and Ca(OH)2 solution and the nature of its product. Cement Concrete Res 29:37–43

    Article  Google Scholar 

  24. Jauberthie R, Rendell F, Tamba S, Cisse I (2000) Origin of the pozzolanic effect of rice husks. Construct Building Mater 14:419–423

    Article  Google Scholar 

  25. Turanli L, Bektas F, Monteiro PJM (2003) Use of ground clay brick as a pozzolanic material to reduce the alkali-silica reaction. Cement Concrete Res 33:1539–1542

    Article  Google Scholar 

  26. Ramachandran VS (1998) Alkali-aggregate expansion inhibiting admixtures. Cement Concrete Compos 20:149–161

    Article  Google Scholar 

  27. Lane DS, Ozyildirim C (1999) Preventive measures for alkali-silica reactions (binary and ternary systems). Cement Concrete Res 29:1281–1288

    Article  Google Scholar 

  28. Bleszinski RF, Thomas MDA (1997) Microstructural studies of alkali-silica reaction in fly ash concrete immersed in alkaline solutions. Adv Cement Based Mater 7:66–78

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the DER and CIH departments of Electricité de France (EdF) and especially Hélène Tournier-Cognon and Eric Bourdarot for their financial and scientific support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Poyet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poyet, S., Sellier, A., Capra, B. et al. Chemical modelling of Alkali Silica reaction: Influence of the reactive aggregate size distribution. Mater Struct 40, 229–239 (2007). https://doi.org/10.1617/s11527-006-9139-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-006-9139-3

Keywords

Navigation