Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-28T14:08:52.969Z Has data issue: false hasContentIssue false

Response of Grafted Tomato (Solanum lycopersicum) to Herbicides

Published online by Cambridge University Press:  20 January 2017

Sushila Chaudhari*
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
Katherine M. Jennings
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
David W. Monks
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
David L. Jordan
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695
Christopher C. Gunter
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
Frank J. Louws
Affiliation:
Department of Plant Pathology and Director of NSF-Center for Integrated Pest Management, North Carolina State University, Raleigh, NC 27695
*
Corresponding author's E-mail: schaudh@ncsu.edu.

Abstract

Tomato grafting has gained increased attention in the United States as an alternative to methyl bromide to control soilborne pests and diseases. Although several herbicides are registered in tomato production, a lack of information exists on the effect of herbicides on grafted tomato. Greenhouse and field experiments were conducted to determine herbicide tolerance of grafted tomato. In greenhouse experiments, halosulfuron (27, 54, and 108 g ai ha−1), metribuzin (280, 560, and 1,120 g ai ha−1), and S-metolachlor (1,070, 2,140, and 3,200 g ai ha−1) were applied posttransplant to nongrafted ‘Amelia' and Amelia scion grafted onto ‘Maxifort' or ‘RST-04-106-T' tomato rootstocks. Although herbicide injury was observed, no differences were observed in grafted and nongrafted tomato response including visible injury assessments, plant height, and fresh weight. Tomato injury at 3 wk after herbicide application increased from 3 to 12, 1 to 87, and 0 to 37% as rate of halosulfuron, metribuzin, and S-metolachlor increased, respectively. In field experiments under plasticulture, herbicides applied pretransplant included fomesafen (280 and 420 g ai ha−1), halosulfuron (39 and 54 g ha−1), metribuzin (280 and 560 g ha−1), napropamide (1,120 and 2,240 g ha−1), S-metolachlor (800 and 1,070 g ha−1), and trifluralin (560 and 840 g ai ha−1). Amelia was used as the scion and the nongrafted control. ‘Anchor-T', ‘Beaufort', or Maxifort tomato were used as rootstocks for grafted plants. Fomesafen, halosulfuron, napropamide, and trifluralin initially caused greater injury to grafted tomato than to nongrafted tomato regardless of rootstock (Anchor-T, Beaufort, or Maxifort). However, by 4 wk after treatment, all grafted and nongrafted plants had recovered from herbicide injury. A transplant type-by-herbicide interaction was not observed for yield, but grafted A-Maxifort tomato produced greater total and marketable yield than nongrafted Amelia tomato. Grafted tomato exhibited similar tolerance as nongrafted tomato for all herbicides applied post- and pretransplant.

El uso de injertos en tomate ha ganado atención en los Estados Unidos como una alternativa a methyl bromide para el control de enfermedades y plagas de suelo. Aunque varios herbicidas han sido registrados en la producción de tomate, existe una falta de información sobre el efecto de herbicidas en tomate injertado. Se realizaron experimentos de campo y de invernadero para determinar la tolerancia de tomate injertado a los herbicidas. En los experimentos de invernadero, se aplicó halosulfuron (27, 54, y 108 g ai ha−1), metribuzin (280, 560, and 1,120 g ai ha−1), y S-metolachlor (1,070, 2,140, and 3,200 g ai ha−1) después del trasplante del tomate ‘Amelia' sin injerto y Amelia injertado sobre un patrón 'Maxifort' o un patrón ‘RST-04-106-T'. Aunque se observó daño del herbicida, no se observaron diferencias entre el tomate injertado y sin injertar en daño visible, altura y peso fresco de planta. El daño en el tomate, a 3 semanas después de la aplicación del herbicida, aumentó de 3 a 12, 1 a 87, y 0 a 37% al incrementarse la dosis de halosulfuron, metribuzin, y S-metolachlor, respectivamente. En los experimentos de campo con cobertura plástica, los herbicidas aplicados antes del trasplante incluyeron fomesafen (280 y 420 g ai ha−1), halosulfuron (39 y 54 g ha−1), metribuzin (280 y 560 g ha−1), napropamide (1,120 y 2,240 g ha−1), S-metolachlor (800 y 1,070 g ha−1), y trifluralin (560 y 840 g ai ha−1). Se usó Amelia como injerto y como testigo sin injertar. Los patrones que se usaron para los injertos del tomate fueron ‘Anchor-T', ‘Beaufort', o Maxifort. Fomesafen, halosulfuron, napropamide, y trifluralin inicialmente causaron más daño al tomate injertado que al tomate sin injertar, sin importar el patrón (Anchor-T, Beaufort, o Maxifort). Sin embargo, a 4 semanas después del tratamiento, todas las plantas injertadas y sin injertar se habían recuperado del daño del herbicida. No se observó una interacción entre el tipo de trasplante y el herbicida para el rendimiento, pero el tomate injertado sobre el patrón Maxifort produjo une rendimiento total y comercializable mayor al del tomate Amelia sin injertar. El tomate injertado mostró una tolerancia similar al tomate sin injertar para todos los tratamientos de herbicidas aplicados post- y pre-trasplante.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Darren Robinson, University of Guelph.

References

Literature Cited

Adcock, CW, Foshee, WG, Wehtje, GR, Gilliam, CH (2008) Herbicide combinations in tomato to prevent nutsedge (Cyperus esulentus) punctures in plastic mulch for multi-cropping systems. Weed Technol 22:136141 Google Scholar
Adkins, JI (2011) Herbicide Use in Grafted Triploid Watermelon [Citrullus lanatus (Thunb.) Matsumura and Nakai]. Ph.D Dissertation. Gainesville, FL: University of Florida. 70 pGoogle Scholar
Anonymous (2015a) Devrinol® DF-XT herbicide label. King of Prussia, PA: United Phosphorus, Inc. 9 pGoogle Scholar
Anonymous (2015b) TriCor® DF herbicide label. King of Prussia, PA: United Phosphorus, Inc. 19 pGoogle Scholar
Barrett, CE, Zhao, X, McSorley, R (2012) Grafting for root-knot nematode control and yield improvement in organic heirloom tomato production. HortScience 47:614620 Google Scholar
Buckelew, JK, Monks, DW, Jennings, KM, Hoyt, GD, Walls, RF (2006) Eastern black nightshade (Solanum ptycanthum) reproduction and interference in transplanted plasticulture tomato. Weed Sci 54:490495 Google Scholar
Bunnell, B, Baker, D, McCarty, B, Hall, W, Colvin, L (2003) Differential response of five bahiagrass (Paspalum notatum) cultivars to metsulfuron. Weed Technol 17:550553 Google Scholar
Cohen, R, Eizenberg, H, Edelstein, M, Horev, C, Lande, T, Porat, A, Achdari, G, Hershenhorn, J (2008) Evaluation of herbicides for selective weed control in grafted watermelons. Phytoparasitica 36:6673 Google Scholar
Colla, G, Suãrez, CMC, Cardarelli, M, Rouphael, Y (2010) Improving nitrogen use efficiency in melon by grafting. HortScience 45:559565 Google Scholar
Dittmar, PJ, Monks, DW, Jennings, KM, Booker, FL (2012) Tolerance of tomato to herbicides applied through drip irrigation. Weed Technol 26:684690 Google Scholar
Fortino, JJ, Splittstoesser, WE (1974a) Response of tomato to metribuzin. Weed Sci 22:460463 Google Scholar
Fortino, JJ, Splittstoesser, WE (1974b) The use of metribuzin for weed control in tomato. Weed Sci 22:615619 Google Scholar
Frank, JR, Beste, CE (1985) Effects of metribuzin placement on the foliage of tomato (Lycopersicon esculenfm) and jimsonweed (Datura stramonium). Weed Sci 31:445449 Google Scholar
Friesen, GH, Hamill, AS (1978) Influence of sunlight on metribuzin injury to transplanted tomatoes. Can J Plant Sci 58:11151117 Google Scholar
Garvey, PV, Meyers, SL, Monks, DW, Coble, HD (2013) Influence of Palmer amaranth (Amaranthus palmeri) on the critical period for weed control in plasticulture-grown tomato. Weed Technol 27:165170 Google Scholar
Gawronski, SW (1983) Tolerance of tomato (Lycopersicon esculentum) cultivars to metribuzin. Weed Sci 31:525527 Google Scholar
Ghosheh, H, Al-Kawamleh, M, Makhadmeh, I (2010) Weed competitiveness and herbicidal sensitivity of grafted tomatoes (Solanum lycopersicon mill.). J Plant Prot Res 50:307313 Google Scholar
Jennings, KM (2010) Tolerance of fresh-market tomato to postemergence-directed imazosulfuron, halosulfuron, and trifloxysulfuron. Weed Technol 24:117120 Google Scholar
Kemble, JM, ed (2015) Southeastern U.S. Vegetable Crop Handbook US-2015. Lincolnshire, IL: Vance Publishing Corp. 277 pGoogle Scholar
Khah, E, Kakava, E, Mavromatis, A, Chachalis, D, Goulas, C (2006) Effect of grafting on growth and yield of tomato (Lycopersicon esculentum Mill.) in greenhouse and open-field. J Appl Horti8:3–7 Google Scholar
Kubota, C, McClure, MA, Kokalis-Burelle, N, Bausher, MG, Rosskopf, EN (2008) Vegetable grafting: history, use, and current technology status in North America. HortScience 43:16641669 Google Scholar
McAvoy, T, Freeman, JH, Rideout, SL, Olson, SM, Paret, ML (2012) Evaluation of grafting using hybrid rootstocks for management of bacterial wilt in field tomato production. HortScience 47:621625 Google Scholar
Mohseni-Moghadam, M, Doohan, D (2015) Weed control, and tolerance of processing tomato (Solanum lycopersicum) to fomesafen. Page 34 in Proceedings of the WSSA. Lexington, KY: Weed Science Society of America Google Scholar
Molin, WT, Maricic, AA, Khan, RA, Mancino, CF (1999) Effect of MON 12037 on the growth and tuber viability of purple nutsedge (Cyperus rotundus). Weed Technol 13:15 Google Scholar
[NCDACS] North Carolina Department of Agriculture & Consumer Services (2015) 2014 marketing season for North Carolina fruits and vegetables. Raleigh, NC. https://www.marketnews.usda.gov/mnp/fv-home. Accessed May 29, 2015Google Scholar
Nelson, KA, Renner, KA (2002) Yellow nutsedge (Cyperus esculentus) control and tuber production with glyphosate and ALS-inhibiting herbicides. Weed Technol 16:512519 Google Scholar
Parochetti, JV (1973) Soil organic matter effect on activity of acetamides, CDAA, and atrazine. Weed Sci 21:157160 Google Scholar
Porterfield, D, Wilcut, J, Clewis, S, Edmisten, K (2002) Weed-free yield response of seven cotton (Gossypium hirsutum) cultivars to CGA-362622 post-emergence. Weed Technol 16:180183 Google Scholar
Pritchard, MK, Warren, GF (1980) Effect of light on the response of tomato (Lycopersicon esculentum) and two weed species to metribuzin. Weed Sci 28:186189 Google Scholar
Rivard, CL, Louws, FJ (2006) Grafting for Disease Resistance in Heirloom Tomatoes. Raleigh, NC: North Carolina Cooperative Extension Service Bulletin Ag–675. Pages 8 pGoogle Scholar
Rivard, CL, O'Connell, S, Peet, MM, Louws, FJ (2010a) Grafting tomato with interspecific rootstock to manage diseases caused by Sclerotium rolfsii and southern root-knot nematode. Plant Dis 94:10151021 Google Scholar
Rivard, CL, O'Connell, S, Peet, MM, Welker, RM, Louws, FJ (2012) Grafting tomato to manage bacterial wilt caused by Ralstonia solanacearum in the southeastern United States. Plant Dis 96:973978 Google Scholar
Rivard, CL, Olha, S, O'Connell, S, Peet, MM, Louws, FJ (2010b) An economic analysis of two grafted tomato transplant production systems in the United States. HortTechnology 20:794803 Google Scholar
Sakata, Y, Ohara, T, Sugiyama, M (2007) The history and present state of the grafting of cucurbitaceous vegetables in Japan. Acta Hort 731:159170 Google Scholar
Schwarz, D, Rouphael, Y, Colla, G, Venema, JH (2010) Grafting as a tool to improve tolerance of vegetables to abiotic stresses: thermal stress, water stress and organic pollutants. Sci Hort 127:162171 Google Scholar
Stephenson, GR, McLeod, JE, Phatak, SC (1976) Differential tolerance of tomato cultivars to metribuzin. Weed Sci 25:382385 Google Scholar
Stringer, JK, Smith, AB, Cullis, BR (2012) Spatial Analysis of Agricultural Field Experiments, in Design and Analysis of Experiments: Special Designs and Applications. Volume 3. Hoboken, NJ: John Wiley & Sons. Pp 122126 Google Scholar
Upchurch, RP, Mason, DD (1962) The influence of soil organic matter on the phytotoxicity of herbicides. Weeds 10:914 Google Scholar
[USDA-AMS] U.S. Department of Agriculture–Agricultural Marketing Service (1997) United States Standards for Grades of Fresh Tomatoes. Washington, DC: USDA.Google Scholar
[USEPA] U.S. Environmental Protection Agency (2005) The Phaseout of Methyl Bromide. http://www.epa.gov/ozone/mbr/. Accessed January 24, 2015Google Scholar
Weaver, SE, Smits, N, Tan, CS (1987) Estimating yield losses of tomatoes (Lycopersicon esculentum) caused by nightshade (Solanum spp.) interference. Weed Sci 35:163168 Google Scholar
Weaver, SE, Tan, CS (1983) Critical period of weed interference in transplanted tomatoes (Lycopersicon esculentum): growth analysis. Weed Sci 31:476481 Google Scholar
Zimdahl, RL (2004) Weed–Crop Competition: Review, A 2nd ed. San Diego, CA: Blackwell. P 220 Google Scholar