Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-13T04:18:24.762Z Has data issue: false hasContentIssue false

Application Placement Equipment for Bahiagrass (Paspalum notatum) Suppression along Roadsides

Published online by Cambridge University Press:  20 January 2017

Travis W. Gannon*
Affiliation:
Box 7620, Crop Science Department, North Carolina State University, Raleigh, NC 27695-7620
Fred H. Yelverton
Affiliation:
Box 7620, Crop Science Department, North Carolina State University, Raleigh, NC 27695-7620
*
Corresponding author's E-mail: travis_gannon@ncsu.edu

Abstract

Experiments were initiated during 2003 and 2004 to evaluate application placement equipment for plant growth regulator (PGR) applications along bahiagrass roadsides. Recently designed equipment combine low-volume application and pesticide placement technology. Application placement equipment conceal the image of a traditional spray application. Evaluated application placement equipment included a wet-blade mower (Burch Wet Blade) and rotary-wick applicator (Weedbug™) compared with a traditional broadcast spray. Wet-blade mowers are designed to mow and simultaneously apply a pesticide solution to a cut stem or leaf in a single pass, whereas rotary-wick applicators are designed to wick a solution onto foliage. Evaluated PGRs included imazapic (9, 35, or 53 g ha−1) and sulfometuron-methyl (26 g ha−1). Bahiagrass injury varied with application placement equipment and was greater with rotary-wick applications in 2003, compared with foliar broadcast applications and the wet-blade mower. Bahiagrass seedhead suppression ranged from 31 to 60% with application placement equipment in July 2003 compared with 93% for a broadcast spray. In 2004, rotary wick- or broadcast-applied PGRs provided excellent (> 90%) seedhead suppression. Although application placement equipment may have advantages to broadcast-spray applications, evaluated equipment did not enhance bahiagrass suppression along roadsides in North Carolina compared with a foliar broadcast spray. Additional research is needed to determine if this type of application may provide consistent results with other species and compounds.

Los experimentos se iniciaron durante 2003 y 2004 para evaluar equipos de aplicación directa de reguladores de crecimiento de las plantas enPaspalum notatum creciendo en los bordes de los caminos. Dicho equipo, de diseño reciente, combina tecnología de aplicación de bajo volumen con la de aplicación directa de pesticidas. El equipo de aplicación directa oculta la imagen de una aplicación tradicional. El equipo evaluado incluyó una segadora de cuchilla húmeda (Burch Wet Blade) y un rotoaplicador de mecha (Weedbug TM), los cuales se compararon con la aplicación asperjada tradicional. Las segadoras de cuchilla húmeda están diseñadas para cortar y aplicar simultáneamente una solución de pesticida al tallo o al follaje en una sola pasada, mientras que los rotoaplicadores de mecha se diseñaron para saturar el follaje con la solución del pesticida. Los reguladores de crecimiento de las plantas evaluados incluyeron imazapic (9, 35, ó 53 g ha−1) y sulfometuron-methyl (26 g ha−1). El daño a Paspalum notatum varió con el tipo de equipo de aplicación utilizado y fue mayor en las aplicaciones con rotoaplicador de mecha en 2003, comparados con las aplicaciones tradicionales al follaje y con las de cuchilla húmeda. La supresión de la formación de semillas de Paspalum notatum varió de 31 a 60% con el equipo de aplicación directa en julio de 2003, en comparación con 93% para una aplicación tradicional. En 2004, el rotoaplicador de mecha o la aplicación tradicional de los reguladores de crecimiento de las plantas lograron una supresión excelente de la semilla. Aunque los equipos de aplicación directa podrían tener ventajas sobre las aplicaciones tradicionales, el equipo evaluado no mejoró la supresión de Paspalum notatum en los bordes de los caminos de Carolina del Norte, en comparación con una aspersión foliar. Se requiere investigación adicional para determinar si este tipo de aplicación podría proporcionar resultados consistentes con otras especies y compuestos.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous, , 1999. North Carolina Turfgrass Survey. 2001 North Carolina Department of Agriculture and Consumer Services.Google Scholar
Baker, R. D., McCarty, L. B., and Colvin, D. L. 1994. Bahiagrass (Paspalum notatum Flueggé) response to three years of sequential PGR applications. Proc. South. Weed Sci. Soc 47:152.Google Scholar
Baker, R. D., McCarty, L. B., Colvin, D. L., Higgins, J. M., Weinbrecht, J. S., and Moreno, J. E. 1999. Bahiagrass (Paspalum notatum) seedhead suppression following consecutive yearly applications of plant growth retardants. Weed Technol. 13:378384.Google Scholar
Beard, J. B. 2002. Turf management for golf courses, 2nd ed. Chelsea, MI Ann Arbor Press.Google Scholar
Bohannan, D. R. and Jordan, T. N. 1995. Effects of ultra-low volume application on herbicide efficacy using oil diluents as carriers. Weed Technol. 9:682688.Google Scholar
Burch, T. B. 2000. Apparatus and method for cutting and treating vegetation. U.S. patent 6,125,621.Google Scholar
Christians, N. E. 1998. Fundamentals of turfgrass management. Chelsea, MI Ann Arbor Press.Google Scholar
Fagerness, M. and Penner, D. 1998. Evaluation of V-10029 and trinexapac-ethyl for annual bluegrass seedhead suppression and growth regulation of five cool-season turfgrass species. Weed Technol. 12:436440.Google Scholar
Goatley, J. M. Jr., Maddox, V. L., and Watkins, R. M. 1996. Growth regulation of bahiagrass (Paspalum notatum Flueggé) with imazaquin and AC 263,222. HortSci 31:396399.Google Scholar
Goatley, J. M. Jr., Maddox, V. L., and Watkins, R. M. 1998. Bahiagrass response to a plant growth regulator as affected by mowing interval. Crop Sci 38:196200.Google Scholar
Gover, A. E., Johnson, J. M., and Kuhns, L. J. 2004. Evaluation of imazapic as a growth regulator in roadside tall fescue. Proc. Northeast. Weed Sci. Soc 58:3435.Google Scholar
Gover, A. E., Watschke, T. L., Spackman, C. W., and Parks, R. W. 1995a. Response of tall fescue to mefluidide in combination with flurprimidol, paclobutrazol, or trinexapac-ethyl. Proc. Northeast. Weed Sci. Soc 49:192193.Google Scholar
Gover, A. E., Watschke, T. L., Spackman, C. W., and Parks, R. W. 1995b. Response of tall fescue to fall or spring application of plant growth regulator treatments. Proc. Northeast. Weed Sci. Soc 49:190191.Google Scholar
Henson, S. E., Skroch, W. A., Burton, J. D., and Worsham, A. D. 2003. Herbicide efficacy using a wet-blade application system. Weed Technol. 17:320324.Google Scholar
Hixson, A. C., Gannon, T. W., and Yelverton, F. H. 2007. Efficacy of application placement equipment for tall fescue (Lolium arundinaceum) growth and seedhead suppression. Weed Technol. 21:801806.Google Scholar
Johansson, T. 1998. Preventing stump regrowth with a herbicide-applying tree cutter. Weed Res. 28:353358.Google Scholar
Johnson, B. J. 1990. Response of bahiagrass (Paspalum notatum) to plant growth regulators. Weed Technol. 4:895899.Google Scholar
Lee, C. R. 2000. Implementation guidance for the control of undesirable vegetation on dredged material. DOER Technical Notes Collection–ERDC TN-DOER-C20, U.S. Army Engineer Research and Development Center, Vicksburg, MS.Google Scholar
McCarty, L. B., Colvin, D. L., and Baker, R. D. 1993. Sequential year application of PGRs for bahiagrass seedhead suppression. Proc. South. Weed Sci. Soc 46:232.Google Scholar
McCarty, L. B., Miller, L. C., and Colvin, D. L. 1990. Tall fescue root-growth rate following mefluidide and flurprimidol application. HortSci 25:581–581.Google Scholar
McCullough, P. E., Liu, H. B., McCarty, L. B., and Whitwell, T. 2004. Response of ‘TifEagle’ bermudagrass to seven plant growth regulators. HortSci 39:7591762.Google Scholar
Moreno, J. E., McCarty, L. B., and Colvin, D. L. 1992. Bahiagrass seedhead control with plant growth regulators. Proc. South. Weed Sci. Soc 45:288.Google Scholar
Mullahey, J. and Williams, M. 2001. Weed control using the Burch wet blade mower. 2001 Florida Beef Cattle Short Course 7179.Google Scholar
Murphy, T. R., McCarty, L. B., and Yelverton, F. H. 2005. Turfgrass plant growth regulators. Pages 705714. In McCarty, L. B. ed. Best Golf Course Management Practices, 2nd ed. Upper Saddle River, NJ Prentice-Hall.Google Scholar
Peacock, C. H. and Flanagan, M. S. 1986. Effects of plant growth regulators on bahiagrass. Proc. Plant Growth Regul. Soc. Am 13:4145.Google Scholar
Rademacher, W. 2000. Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annu. Rev. Plant Physiol. Plant Mol. Biol 51:501531.Google Scholar
Sellers, B. A. and Mullahey, J. J. 2008. Broadcast vs. wet-blade herbicide applications for Southern wax myrtle (Myrica cerifera) control. Weed Technol. 22:286289.Google Scholar
Skroch, W. A., Worsham, A. D., Henson, S. E., and Wahlers, R. L. 1998. Efficacy and application with the Burch wet blade system. Proc. South. Weed Sci. Soc 51:218.Google Scholar
Spak, D., DiPaola, J., Lewis, W., and Anderson, C. 1993. Tall fescue sward dynamics. 2. Influence of 4 plant growth regulators. Crop Sci 33:304310.Google Scholar
Turgeon, A. J. 1996. Turfgrass Management. 4th ed. Upper Saddle River, NJ Prentice-Hall.Google Scholar
Wahlers, R., Burton, J., Maness, E., and Skroch, W. 1997a. Physiological characteristics of a stem cut and blade delivery method of application. Weed Sci. 45:746749.Google Scholar
Wahlers, R., Burton, J., Maness, E., and Skroch, W. 1997b. A stem cut and blade delivery method of herbicide application for weed control. Weed Sci. 45:829832.Google Scholar
Yelverton, F. H., McCarty, L. B., and Murphy, T. R. 1997. Effects of imazameth on the growth of Paspalum notatum Flueggé: Int. Turfgrass Soc 8:10851094.Google Scholar