Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-15T04:49:36.424Z Has data issue: false hasContentIssue false

Assessing the Potential for Fluridone Carryover to Six Crops Rotated with Cotton

Published online by Cambridge University Press:  20 January 2017

Zachary T. Hill*
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Jason K. Norsworthy
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
L. Tom Barber
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 102 Northeast Front Street Suite 2, Lonoke, AR 72086
Trent L. Roberts
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Edward E. Gbur
Affiliation:
Agriculture Statistics, University of Arkansas, 935 West Maple Street, Fayetteville, AR 72701
*
Corresponding author's E-mail: zhill@uaex.edu.

Abstract

The herbicide fluridone is a soil-residual herbicide that should provide effective control of several problematic agronomic weeds, but because of herbicide persistence, injury to rotational crops is possible. In this experiment, multiple rates of fluridone were applied PRE to cotton at four irrigated locations across Arkansas to determine the risk of fluridone persisting and injuring subsequently planted wheat, corn, soybean, rice, grain sorghum, and sunflower. The multiple rates of fluridone were compared with fluometuron and evaluated for percentage of crop injury, crop density, and potential yield loss for each crop at the end of the subsequent growing season. Regardless of the location, wheat exhibited the greatest injury with 13 to 26% at Fayetteville (silt loam), 8 to 15% at Pine Tree (silt loam), 2 to 7% at Keiser (silty clay), and 3 to 8% at Rohwer (silty clay). Along with high levels of injury to wheat, fluridone at 900 g ai ha−1 caused loss of wheat stands to 29 plants m−1 row compared with fluometuron, which had stands of 49 plants m−1 row. Although injury occurred in wheat at all locations, no rate of fluridone reduced wheat yields compared with fluometuron. Injury to grain sorghum ranged from 5 to 10% from all rates of fluridone at Pine Tree. Fluridone at 900 g ha−1 (11 plants m−1 row) also reduced grain sorghum stands at Pine Tree over that of fluometuron (19 plants m−1 row). A decrease in grain sorghum yield was also observed from fluridone at 448, 673, and 900 g ha−1 compared with fluometuron at Pine Tree. At Keiser, rice exhibited significant levels of injury (1 to 13%) from fluridone 393 d after treatment. In conclusion, injury to a wheat rotational crop is more likely following an application of fluridone in cotton than is injury to other rotational crops, but yield reductions are not expected for most rotational crops when fluridone is applied to cotton at an anticipated labeled rate of 224 g ha−1.

El herbicida fluridone es un herbicida residual en el suelo que debería brindar un control efectivo de varias malezas agronómicas problemáticas, pero debido a su persistencia, es posible el daño para cultivos en rotación. En este experimento, múltiples dosis de fluridone fueron aplicadas PRE a algodón en cuatro localidades con riego en Arkansas para determinar el riesgo de persistencia de fluridone y el daño al trigo, maíz, soja, arroz, sorgo para grano, y girasol sembrados la temporada siguiente al algodón. Las múltiples dosis de fluridone fueron comparadas con fluometuron y evaluadas por porcentaje de daño al cultivo, densidad del cultivo, y el potencial de pérdidas de rendimiento para cada cultivo al final de la temporada de crecimiento. Sin importar la localidad, el trigo exhibió el mayor daño con 13 a 26% en Fayetteville (franco limoso), 8 a 15% en Pine Tree (franco limoso), 2 a 7% en Keiser (arcilloso limoso), y 3 a 8% en Rohwer (arcilloso limoso). Además de altos niveles de daño al trigo, fluridone a 900 g ai ha−1 causó pérdida de plantas establecidas de trigo, con 29 plantas m−1 de hilera al compararse con fluometuron, el cual tuvo densidades de 49 plantas m−1 de hilera. Aunque el daño en el trigo ocurrió en todas las localidades, ninguna dosis de fluridone redujo el rendimiento del trigo al compararse con fluometuron. El daño en sorgo para grano varió entre 5 y 10% entre todas las dosis en Pine Tree. Fluridone a 900 g ha−1 (11 plantas m−1 de hilera) también redujo la densidad del sorgo en Pine Tree comparado con fluometuron (19 plantas m−1 de hilera). Una reducción en la rendimiento del sorgo para grano fue también observada con fluridone a 448, 673, y 900 g ha−1 al compararse con fluometuron en Pine Tree. En Keiser, el arroz mostró niveles de daño significativos (1 a 13%) producto del fluridone 393 d después del tratamiento. En conclusión, el daño a trigo en rotación es más probable después de una aplicación de fluridone en algodón que un daño a otros cultivos en rotación, pero no se esperan reducciones en el rendimiento para la mayoría de los cultivos en rotación cuando fluridone se aplica al algodón a una dosis de etiqueta que se anticipa será de 224 g ha−1.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate editor for this paper: Daniel Stephenson, Louisiana State University Agricultural Center

References

Literature Cited

Albritton, R, Parka, SJ (1978) Studies evaluating the site of fluridone uptake by fourteen crop and ten weed species. Proc South Weed Sci Soc 31:253259 Google Scholar
Anderson, IC, Robertson, DS (1960) Role of carotenoids in protecting chlorophyll from photodestruction. Plant Physiol 35:531534 Google Scholar
Banks, PA, Ketchersid, ML, Merkle, MG (1979) The persistence of fluridone in various soils under field and controlled conditions. Weed Sci 27:631633 Google Scholar
Banks, PA, Merkle, MG (1979) Field evaluations of the herbicidal effects of fluridone on two soils. Agron J 71:759762 Google Scholar
Bartels, PG, Watson, CW (1978) Inhibition of carotenoid synthesis by fluridone and norflurazon. Weed Sci 26:198203 Google Scholar
Berard, DF, Rainey, DP, Lin, CC (1978) Absorption, translocation, and metabolism of fluridone in selected crop species. Weed Sci 26:252254 Google Scholar
Bozarth, GA, Funderburk, HH Jr. (1971) Degradation of fluometuron in sandy loam soil. Weed Sci 19:691695 Google Scholar
Devlin, RM, Saras, CN, Kisiel, MJ, Kostusiak, AS (1978) Influence of fluridone on chlorophyll content of wheat (Triticum aestivum) and corn (Zea mays). Weed Sci 26:432433 Google Scholar
Heap, I (2015) The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed March 21, 2015Google Scholar
Miller, JH, Carter, CH (1983) Fluridone for annual weed control in western irrigated cotton (Gossypium hirsutum). Weed Sci 31:290293 Google Scholar
Senseman, SA, ed (2007) Herbicide Handbook. 7th edn. Lawrence, KS: Weed Science Society of America. Pp. 147148 Google Scholar
Scott, RC, Barber, LT, Boyd, JW, Seldon, G, Norsworthy, JK, Burgos, N (2015) Recommended Chemicals for Weed and Brush Control—MP44. Little Rock, AR: Cooperative Extension Service, University of Arkansas; U.S. Department of Agriculture; and County Governments. http://www.uaex.edu/publications/pdf/mp44/mp44.pdf. Accessed September 6, 2015Google Scholar
Sharp, T, Frans, R, Talbert, R (1982) Persistence of cotton (Gossypium hirsutum) herbicides and injury to replacement soybeans (Glycine max) after stand failure. Weed Sci 30:109115 Google Scholar
Shea, PJ, Weber, JB (1983a) Effect of soil pH on fluridone activity and persistence as determined by chlorophyll measurements. Weed Sci 31:347350 Google Scholar
Shea, PJ, Weber, JB (1983b) Fluridone adsorption on mineral clays, organic matter, and modified Norfolk soil. Weed Sci 31:528532 Google Scholar
Schroeder, J, Banks, PA (1986a) Persistence and activity of norflurazon and fluridone in five Georgia soils under controlled conditions. Weed Sci 34:599606 Google Scholar
Schroeder, J, Banks, PA (1986b) Persistence of fluridone in five Georgia soils. Weed Sci 34:612616 Google Scholar
Waldrep, TW, Taylor, HM (1976) 1-Methyl-3-phenyl-5-[3-(trifluoromethyl)phenyl]-4(1H)-pyridinone, a new herbicide. J Agric Food Chem 24:12501251 Google Scholar