Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T22:10:19.487Z Has data issue: false hasContentIssue false

Metabolism-based herbicide resistance: regulation by safeners

Published online by Cambridge University Press:  20 January 2017

Kriton K. Hatzios
Affiliation:
Deceased. Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061-0402

Abstract

Safeners are chemical agents that reduce the phytotoxicity of herbicides to crop plants by a physiological or molecular mechanism, without compromising weed control efficacy. Commercialized safeners are used for the protection of large-seeded grass crops, such as corn, grain sorghum, and wet-sown rice, against preplant-incorporated or preemergence-applied herbicides of the thiocarbamate and chloroacetanilide families. Safeners also have been developed to protect winter cereal crops such as wheat against postemergence applications of aryloxyphenoxypropionate and sulfonylurea herbicides. The use of safeners for the protection of corn and rice against sulfonylurea, imidazolinone, cyclohexanedione, isoxazole, and triketone herbicides also is well established. A safener-induced enhancement of herbicide detoxification in safened plants is widely accepted as the major mechanism involved in safener action. Safeners induce cofactors such as glutathione and herbicide-detoxifying enzymes such as glutathione S-transferases, cytochrome P450 monooxygenases, and glucosyl transferases. In addition, safeners enhance the vacuolar transport of glutathione or glucose conjugates of selected herbicides. The safener-mediated induction of herbicide-detoxifying enzymes appears to be part of a general stress response.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adams, C. A., Blee, E., and Casida, J. E. 1983. Dichloroacetamide herbicide antidotes enhance sulfate metabolism in corn roots. Pestic. Biochem. Physiol 19:350360.CrossRefGoogle Scholar
Alfenito, M. and Walbot, V. 1997. Flavonoids and phytohormones, two toxic secondary metabolites are GST substrates. Pages 197208 in Hatzios, K. K. ed. Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants. NATO ASI Series. Dordrecht, The Netherlands: Kluwer.Google Scholar
Anderson, M. P. and Gronwald, J. W. 1991. Atrazine resistance in a velveltleaf (Abutilon theophrasti) biotype due to enhanced glutathione S- transferase activity. Plant Physiol 96:104109.CrossRefGoogle Scholar
Anonymous. 1992. MON 13900 Safener. Technical Data Sheet. St. Louis, MO: Monsanto. 2 p.Google Scholar
Barrett, M. 1995. Metabolism of herbicides by cytochrome P450 in corn. Drug Metab. Drug Interact 12:299315.CrossRefGoogle ScholarPubMed
Barrett, M., Polge, N., Baerg, R., Bradshaw, L., and Poneleit, C. 1997. Role of cytochrome P450 in herbicide metabolism and selectivity and multiple herbicide metabolizing cytochrome P450 activities in maize. Pages 3550 in Hatzios, K. K. ed. Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants. NATO ASI Series. Dordrecht, The Netherlands: Kluwer.Google Scholar
Blake-Kalff, M. M. A., Randaqll, R. A., and Coleman, J. O. D. 1997. Compartmentation of detoxified xenobiotics in plant cells. Pages 245259 in Hatzios, K. K. ed. Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants. NATO ASI Series. Dordrecht, The Netherlands: Kluwer.CrossRefGoogle Scholar
Bolwell, G. P., Bozak, K., and Zimmerlin, A. 1994. Plant cytochrome P450. Phytochemistry 37:14911506.Google Scholar
Bordas, B., Kömives, T., Szanto, Z., and Lopata, A. 2000. Comparative three-dimensional quantitative structure-activity relationship study of safeners and herbicides. J. Agric. Food Chem 48:926931.CrossRefGoogle ScholarPubMed
Brazier, M., Cole, D., and Edwards, R. 2002. O-Glucosyltransferase activities involved in herbicide metabolism in wheat. Abstr. Weed Sci. Soc. Am 42:2930.Google Scholar
Breaux, E. J. 1987. Initial metabolism of acetochlor in tolerant and susceptible species. Weed Sci 35:463468.Google Scholar
Breaux, E. J., Hoobler, M. A., Patanella, J. E., and Leyes, C. A. 1989. Mechanisms of action of thiazole safeners. Pages 163175 in Hatzios, K. K. and Hoagland, R. E. eds. Crop Safeners for Herbicides: Development, Uses, and Mechanisms of Action. San Diego, CA: Academic.Google Scholar
Breaux, E. J., Patanella, J. E., and Sanders, E. F. 1987. Chloroacetanilide herbicide selectivity: analyses of glutathione and homoglutathione in tolerant, susceptible, and safened seedlings. J. Agric. Food Chem 35:474478.Google Scholar
Brown, H. M., Brattsten, L. B., Lilly, D. E., and Hanna, P. J. 1993. Metabolic pathways and residue levels of thifensulfuron methyl in soybeans. J. Agric. Food Chem 41:17241730.CrossRefGoogle Scholar
Brown, H. M., Joshi, M. M., Van, A. T., Carski, T. H., Dulka, J. J., Patrick, M. C., Reister, R. W., Livingston, R. S., and Doughty, J. 1997. Degradation of thifensulfuron methyl in soil: role of microbial carboxylesterase activity. J. Agric. Food Chem 45:955961.Google Scholar
Brown, H. M., Wittenbach, V. A., Forney, D. R., and Strachan, S. D. 1990. Basis for soybean tolerance to thifensulfuron methyl. Pestic. Biochem. Physiol 37:303313.Google Scholar
Carringer, R. D., Rieck, C. E., and Bush, L. P. 1978. Effects of R-25788 on EPTC metabolism in corn (Zea mays). Weed Sci 26:167171.Google Scholar
Cole, D. J. 1994. Detoxification and activation of agrochemicals in plants. Pestic. Sci 42:209222.Google Scholar
Cole, D. J., Cummins, I., Hatton, P. J., Dixon, D., and Edwards, R. 1997. Glutathione transferases in crops and weeds. Pages 139154 in Hatzios, K. K. ed. Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants. NATO ASI Series. Dordrecht, The Netherlands: Kluwer.CrossRefGoogle Scholar
Cole, D. J. and Edwards, R. 2000. Secondary metabolism of agrochemicals in plants. Pages 107154 in Roberts, T. ed. Metabolism of Agrochemicals in Plants. Chicester, U.K.: Wiley.Google Scholar
Dangl, J. L. and Jones, J. D. G. 2001. Plant pathogens and integrated defense responses to infection. Nature 411:826833.CrossRefGoogle ScholarPubMed
Davies, J. and Caseley, J. C. 1999. Herbicide safeners: a review. Pestic. Sci 55:10431058.3.0.CO;2-L>CrossRefGoogle Scholar
Deng, F. and Hatzios, K. K. 2002a. Purification and characterization of two glutathione S-transferase isozymes from indica-type rice involved in herbicide detoxification. Pestic. Biochem. Physiol 72:1023.CrossRefGoogle Scholar
Deng, F. and Hatzios, K. K. 2002b. Characterization and safener-induction of multiple glutathione S-transferases in three genetic lines of rice. Pestic. Biochem. Physiol 72:2439.CrossRefGoogle Scholar
De Veylder, L., Montagu, M., and Inze, D. 1997. Herbicide-safener inducible gene expression in Arabidopsis thaliana . Plant Cell Physiol 38:568577.Google Scholar
Dixon, D. A., Cole, D. J., and Edwards, R. 1998a. Purification, regulation and cloning of a glutathione transferase (GST) from maize resembling the auxin-inducible type-III GSTs. Plant Mol. Biol 36:7587.Google Scholar
Dixon, D. A., Cummins, J., Cole, D. J., and Edwards, R. 1998b. Glutathione-mediated degradation systems in plants. Curr. Opin. Plant Biol 1:258270.CrossRefGoogle ScholarPubMed
Droog, F. 1997. Plant glutathione S-transferase, a tale of theta and tau. J. Plant Growth Regul 16:95107.Google Scholar
Dubelman, A. M., Solsten, T. R., Fujiwara, H., and Mehresheikh, A. 1997. Metabolism of halosulfuron-methyl by corn and wheat. J. Agric. Food Chem 45:23142321.Google Scholar
Durst, F., Benveniste, I., Lesot, A., Salaun, J-P., and Reichhart, D-P. 1997. Induction of plant cytochrome P450. Pages 1934 in Hatzios, K. K. ed. Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants. NATO ASI Series. Dordrecht, The Netherlands: Kluwer.Google Scholar
Durst, F. and Nelson, D. R. 1995. Diversity and evolution of plant P450 and P450 reductases. Drug Metab. Drug Interact 12:189206.CrossRefGoogle ScholarPubMed
Durst, F. and O'Keefe, D. P. 1995. Plant cytochromes P450: an overview. Drug Metab. Drug Interact 12:171188.Google Scholar
Evans, I. J. and Greenland, A. J. 1998. Transgenic approaches to disease protection: applications of antifungal proteins. Pestic. Sci 54:353359.Google Scholar
Farago, S. and Brunold, C. 1990. Regulation of assimilatory sulfate reduction by herbicide antidotes. Plant Physiol 94:18081812.Google Scholar
Farago, S. and Brunold, C. 1993. Regulation of thiol contents in maize roots by intermediates and effectors of glutathione synthesis. J. Plant Physiol 144:433437.Google Scholar
Farago, S., Brunold, C., and Kreuz, K. 1994. Herbicide safeners and glutathione metabolism. Physiol. Plant 91:537542.CrossRefGoogle Scholar
Frear, D. S. 1995. Wheat microsomal cytochrome P450 monooxygenases: characterization and importance in the metabolic detoxification and selectivity of wheat herbicides. Drug Metab. Drug Interact 12:329357.Google Scholar
Frear, D. S. and Still, G. G. 1968. The metabolism of 3,4-dichloropropionanilide in plants. Partial purification and properties of an aryl acylamidase from rice. Phytochemistry 7:913920.Google Scholar
Frova, C., Sari Gorla, M., Pe, M. E., Greenland, A., Jepson, I., and Rossini, L. 1997. Role of the different GST isozymes of maize in herbicide tolerance: genetic and biochemical analysis. Pages 171181 in Hatzios, K. K. ed. Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants. NATO ASI Series. Dordrecht, The Netherlands: Kluwer.Google Scholar
Gaillard, F., Dufaud, A., Tommasini, R., Kreuz, K., Amhrein, N., and Martinoia, E. 1994. A herbicide antidote (safener) induces the activity of both the herbicide detoxifying enzyme and of a vacuolar transporter for the detoxified herbicide. FEBS Lett 352:219221.Google Scholar
Glazebrook, J. 2001. Genes controlling expression of defense responses in Arabidopsis: 2001 status. Curr. Opin. Plant Biol 13:19831986.Google Scholar
Gronwald, J. W. 1989. Influence of herbicide safeners on herbicide metabolism. Pages 103128 in Hatzios, K. K. and Hoagland, R. E. eds. Crop Safeners for Herbicides: Development, Uses, and Mechanisms of Action. San Diego, CA: Academic.Google Scholar
Gronwald, J. W. and Plaisance, K. L. 1998. Isolation and characterization of glutathione S-transferase isozymes from sorghum. Plant Physiol 117:877892.Google Scholar
Hall, J. C., Hoagland, R. E., and Zablotowicz, R. M. 2001. Pesticide Biotransformation in Plants and Microorganisms: Similarities and Divergencies. ACS Symposium Series 777. Washington, D.C.: American Chemical Society.Google Scholar
Hall, J. C. and Stephenson, G. R. 1995. The basis for the synergism and safening action of fenchlorazole-ethyl on the herbicidal activity of fenoxaprop-ethyl: a review. Pages 261268 in Proceedings of the Brighton Crop Protection Conference—Weeds. Crop Protection Council, Surrey, U.K. Google Scholar
Han, S. and Hatzios, K. K. 1991. Effects of the herbicide pretilachlor and the safener fenclorim on glutathione content and glutathione-dependent enzyme activity of rice. Z. Naturforsch 46c:861865.Google Scholar
Hatzios, K. K. 1983. Herbicide antidotes: development, chemistry and mode of action. Adv. Agron 36:265316.CrossRefGoogle Scholar
Hatzios, K. K. 1991a. An overview of the mechanisms of action of herbicide safeners. Z. Naturforsch 46c:819827.CrossRefGoogle Scholar
Hatzios, K. K. 1991b. Biotransformations of herbicides in higher plants. Pages 141185 in Grover, R. and Fich, M. eds. Environmental Chemistry of Herbicides, Vol. II. Boca Raton, FL: CRC.Google Scholar
Hatzios, K. K. 1993. Mode of action of naphthalic anhydride as a maize safener for thefensulfuron-methyl. Pages 12591266 in Proceedings of the Brighton Crop Protection Conference—Weeds. Volume 3. BCPC, Loughborough, U.K. Google Scholar
Hatzios, K. K. ed. 1997. Regulation of Enzymatic System Detoxifying Xenobiotics in Plants. NATO ASI Series. Dordrecht, The: Netherlands: Kluwer.Google Scholar
Hatzios, K. K. 2000. Herbicide safeners and synergists. Pages 259294 in Roberts, T. ed. Metabolism of Agrochemicals in Plants. Chicester, U.K.: Wiley.Google Scholar
Hatzios, K. K. 2001. Functions and regulation of plant glutathione S- transferases. Pages 218239 in Hall, J. C., Hoagland, R. E., and Zablotowicz, R. M. eds. Pesticide Biotransformation in Plants and Microorganisms: Similarities and Divergences. ACS Symposium Series 777. Washington, D.C.: American Chemical Society.Google Scholar
Hatzios, K. K. and Hoagland, R. E. eds. 1989. Crop Safeners for Herbicides: Development, Uses, and Mechanisms of Action. San Diego, CA: Academic. 404 p.Google Scholar
Hershey, H. P. and Stoner, T. D. 1991. Isolation and characterization of cDNA clones for RNA species induced by substituted benzenesulfonamides in corn. Plant Mol. Biol 17:679690.Google Scholar
Hill, B. D., Stobbe, E. H., and Jones, B. L. 1978. Hydrolysis of benzoylprop-ethyl by a wild oat esterase. Weed Res 18:669675.CrossRefGoogle Scholar
Hirase, K. and Molin, W. T. 2001. Effect of flurazole and other safeners for chloroacetanilide herbicides on cysteine synthase in sorghum roots. Pestic. Biochem. Physiol 71:116123.Google Scholar
Holton, T. A. and Cornish, E. C. 1995. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:10711083.Google Scholar
Incledon, B. J. and Hall, J. C. 1997. Enzymatic deesterification of xenobiotics in plants. Pages 6782 in Hatzios, K. K. ed. Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants. NATO ASI Series. Dordrecht, The Netherlands: Kluwer.CrossRefGoogle Scholar
Irzyk, G. P. and Furest, E. P. 1997. Characterization and induction of maize glutathione S-transferases involved in herbicide detoxification. Pages 155170 in Hatzios, K. K. ed. Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants. NATO ASI Series. Dordrecht, The Netherlands: Kluwer.Google Scholar
Ishikawa, T. 1992. The ATP-dependent glutathione S-conjugate export pump. Trends Biochem. Sci 17:463468.Google Scholar
Jepson, I., Andrews, C. J., Roussel, V., Skipsey, M., and Towson, J. K. 1999. Transgenic approaches to understanding glutahione S-transferases. Abstr. Weed Sci. Soc. Am 39:179.Google Scholar
Jepson, I., Holt, D. C., Roussel, V., Wright, S. Y., and Greenland, A. J. 1997. Transgenic plant analysis as a tool for the study of maize glutathione S-transferases. Pages 313323 in Hatzios, K. K. ed. Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants. NATO ASI Series. Dordrecht, The Netherlands: Kluwer.Google Scholar
Jepson, I., Martinez, A., and Sweeman, J. P. 1998. Chemical-inducible gene expression systems for plants—a review. Pestic. Sci 54:360367.Google Scholar
Koeppe, M. K. and Brown, H. M. 1995. Sulfonylurea herbicide plant metabolism and crop selectivity. Agro-Food-Ind. Hi-Tech 6:914.Google Scholar
Kömives, T., Gullner, G., and Kiraly, Z. 1997. The ascorbate-glutathione cycle and oxidative stresses in plants. Pages 8596 in Hatzios, K. K. ed. Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants. NATO ASI Series. Dordrecht, The Netherlands: Kluwer.Google Scholar
Kömives, T. and Hatzios, K. K. 1991. Chemistry and structure-activity relationships of herbicide safeners. Z. Naturforsch 46c:867871.Google Scholar
Kömives, T., Kömives, V. A., Balzazs, M., and Dutka, F. 1985. Role of glutathione-related enzymes and the mode of action of herbicide antidotes. Pages 11551162 in Proceedings of the British Crop Protection Conference—Weeds. BCPC, Loughborough, U.K. Google Scholar
Kreuz, K. 1993. Herbicide safeners: recent advances and biochemical aspects of their mode of action. Pages 12491258 in Proceedings of the Brighton Crop Protection Conference—Weeds. Volume 3. BCPC, Loughborough, U.K. Google Scholar
Kreuz, K., Gaudin, J., Stingelin, J., and Ebert, E. 1991. Metabolism of the aryloxyphenoxypropionate herbicide CGA 184927 in wheat, barley, and maize: differential effects of the safener CGA 185072. Z. Naturforsch 46c:901905.CrossRefGoogle Scholar
Kreuz, K., Tommasini, R., and Martinoia, E. 1996. Old enzymes for a new job: herbicide detoxification in plants. Plant Physiol 111:349353.Google Scholar
Lamoureux, G. L. and Rusness, D. G. 1989. The role of glutathione and glutathione S-transferases in pesticide metabolism, selectivity and mode of action in plants and insects. Pages 153196 in Dolphin, D., Poulson, R., and Avramovic, O. eds. Glutathione: Chemical Biochemical and Medical Aspects. New York: Wiley.Google Scholar
Lamoureux, G. L. and Rusness, D. G. 1991. The effect of BAS-145138 safener on chlorimuron ethyl metabolism and toxicity in corn. Z. Naturforsch 46c:882886.CrossRefGoogle Scholar
Lamoureux, G. L. and Rusness, D. G. 1993. Glutathione in the metabolism and detoxification of xenobiotics in plants. Pages 221237 in De Kok, L. J., Stulen, I., Rennenberg, H., Brunold, C., and Rauser, W. eds. Sulfur Nutrition and Assimilation in Higher Plants. Hague, The Netherlands: SPB Academic.Google Scholar
Lamoureux, G. L., Shimabukuro, R. H., and Frear, D. S. 1991. Glutathione and glycoside conjugation in herbicide selectivity. Pages 227261 in Caseley, J. C., Cussans, G. W., and Atkin, R. K. eds. Herbicide Resistance in Weeds and Crops. Oxford, U.K.: Butterworth-Heinemann.Google Scholar
Leustek, T. 1998. Molecular genetics of sulfate assimilation in plants. Physiol. Plant 97:411419.Google Scholar
Li, Z-S., Zhao, Y., and Rea, P. A. 1995a. Magnesium adenosine 5′ triphosphate-energized transport of glutathione S-conjugates by plant vacuolar membrane vesicles. Plant Physiol 107:12571268.Google Scholar
Li, Z-S., Zhen, R-G., and Rea, P. A. 1995b. 1-Chloro-2,4-dinitrobenzene- elicited increase in vacuolar glutathione S-conjugate transport activity. Plant Physiol 109:177185.Google Scholar
Link, G., Tiller, K., and Baginsky, S. 1997. Glutathione, a regulator of chloroplast transcription. Pages 125137 in Hatzios, K. K. ed. Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants. NATO ASI Series. Dordrecht, The Netherlands: Kluwer.Google Scholar
Low, P. S. and Merida, J. R. 1996. The oxidative burst in plant defense: function and signal transduction. Physiol. Plant 96:533542.Google Scholar
Marrs, K. A. 1996. The functions and regulation of glutathione S-transferases in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol 47:127158.Google Scholar
Marrs, K. A., Alfenito, M. R., Lloyd, A. M., and Walbot, V. 1995. A glutathione S-transferase involved in vacuolar transfer by the maize gene Bronze-2. Nature 375:397400.Google Scholar
Martinoia, E., Grill, E., Tommasini, R., Kreuz, K., and Amhrein, N. 1993. ATP-dependent glutathione S-conjugate ‘export’ pump in the vacuolar membrane of plants. Nature 364:247–219.Google Scholar
McGonigle, B., Keelr, S. J., Lau, S. M., Koeppe, M. K., and O'Keefe, D. P. 2000. A genomics approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maize. Plant Physiol 124:11051110.Google Scholar
McGonigle, B., Lau, S-M. C., and O'Keefe, D. P. 1997. Endogenous reactions and substrate specificity of herbicide metabolizing enzymes. Pages 917 in Hatzios, K. K. ed. Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants. NATO ASI Series. Dordrecht, The Netherlands: Kluwer.Google Scholar
Meister, A. 1995. Glutathione biosynthesis and its inhibition. Methods Enzymol 252:2630.Google Scholar
Miller, K. D., Irzyk, G. P., and Fuerst, E. P. 1994. Benoxacor treatment increases glutathione S-transferase activity in suspension cultures of Zea mays . Pestic. Biochem. Physiol 48:123134.Google Scholar
Miller, K. D., Irzyk, G. P., Fuerst, E. P., McFarland, J. E., Barringer, M., Cruz, S., Eberle, W. J., and Foery, W. 1996a. Time course of benoxacor metabolism and identification of benoxacor metabolites isolated from suspension-cultured Zea mays cells 1 hour after treatment. J. Agric. Food Chem 44:33263334.Google Scholar
Miller, K. D., Irzyk, G. P., Fuerst, E. P., McFarland, J. E., Barringer, M., Cruz, S., Eberle, W. J., and Foery, W. 1996b. Identification of metabolites of the herbicide safener benoxacor isolated from suspension-cultured Zea mays cells 3 and 24 hours after treatment. J. Agric. Food Chem 44:33353341.Google Scholar
Mougin, C. P., Corio-Costet, M-F., and Werck-Reichhart, D. 2001. Plant and fungal cytochrome P-450s: their role in pesticide transformation. Pages 166181 in Hall, J. C., Hoagland, R. E., and Zablotowicz, R. M. eds. Pesticide Biotransformation in Plants and Microorganisms: Similarities and Divergencies. ACS Symposium Series 777. Washington, D.C.: American Chemical Society.Google Scholar
Nicolaus, B., Sato, Y., Wakabayashi, K., and Böger, P. 1997. Activation of proherbicides by glutathione S-transferase. Pages 183196 in Hatzios, K. K. ed. Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants. NATO ASI Series. Dordrecht, The Netherlands: Kluwer.Google Scholar
Noctor, G., Jouanin, L., and Foyer, C. H. 1997. The biosynthesis of glutathione explored in transformed plants. Pages 109124 in Hatzios, K. K. ed. Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants. NATO ASI Series. Dordrecht, The Netherlands: Kluwer.Google Scholar
Ohkawa, H., Siota, N., Inui, H., Sugiura, M., Yabusake, Y., Ohkawa, Y., and Ishige, T. 1997. Herbicide-resistant tobacco and potato plants expressing mammalian P450 monooxygenases. Pages 307312 in Hatzios, K. K. ed. Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants. NATO ASI Series. Dordrecht, The Netherlands: Kluwer.Google Scholar
O'Keefe, D. P., Tepperman, J. M., Dean, C., Leto, K. J., Erbes, D. L., and Odell, J. T. 1994. Plant expression of a bacterial cytochrome P450 that catalyzes activation of a sulfonylurea herbicide. Plant Physiol 105:473482.Google Scholar
Pallos, F. and Casida, J. E. eds. 1978. Chemistry and Action of Herbicide Antidotes. New York: Academic.Google Scholar
Parker, C. 1983. Herbicide antidotes—a review. Pestic. Sci 14:4048.Google Scholar
Persans, M. W., Wang, J., and Schuler, M. A. 2001. Characterization of maize cytochrome P450 monooxygenases induced in response to safeners and bacterial pathogens. Plant Physiol 125:11261138.Google Scholar
Pflugmacher, S., Schröder, P., and Sandermann, H. 2000. Taxonomic distribution of plant glutathione S-transferases acting on xenobiotics. Phytochemistry 54:267278.Google Scholar
Potter, S., Moreland, D. E., Kreuz, K., and Ward, E. 1995. Induction of cytochrome P450 genes by ethanol in maize. Drug Metab. Drug Interact 12:317328.CrossRefGoogle ScholarPubMed
Powles, S. B. and Preston, C. 1995. Herbicide Cross Resistance and Multiple Resistance in Plants. Monograph 2. Basel, Switzerland: Herbicide Resistance Action Committee. 22 p.Google Scholar
Ramsey, R. J. L., Mena, F. L., and Stephenson, G. R. 2001. Effects of chemical safeners on herbicide action and metabolism in plants. Pages 310332 in Hall, J. C., Hoagland, R. E., and Zablotowicz, R. M. eds. Pesticide Biotransformation in Plants and Microorganisms: Similarities and Divergencies. ACS Symposium Series 777. Washington, D.C.: American Chemical Society.Google Scholar
Rea, P. A., Li, Z-S., Lu, Y. P., Drozdowicz, Y. M., and Martinoia, E. 1998. From vacuolar GS-X pumps to multispecific ABC transporters. Annu. Rev. Plant Physiol. Plant Mol. Biol 49:727740.Google Scholar
Rennenberg, H. and Brunold, C. 1994. Significance of glutathione metabolism in plants under stress. Pages 142156 in Behnke, H.-D., Luttge, U., Esser, K., Kadereit, J. W., and Runge, M. eds. Progress in Botany, Vol. 5. Berlin, Germany: Springer Verlag.Google Scholar
Roberts, T. ed. 2000. Metabolism of Agrochemicals in Plants. Chicester, UK: Wiley.Google Scholar
Rushmore, T. H. and Pickett, C. B. 1993. Glutathione S-transferases, structure, regulation and therapeutic implications. J. Biol. Chem 268:1147511478.Google Scholar
Sanchez-Fernandez, R., Ardiles-Diaz, W., Van Montagu, M., Inze, D., and May, M. 1998. Cloning and expression analyses of AtMRP4, a novel MRP-like gene from Arabidospsis thaliana . Mol. Gen. Genet 258:655662.Google Scholar
Sandermann, H., Haas, M., Messner, B., Pflugmacher, S., Schröder, P., and Wetzel, A. 1997. The role of glucosyl and malonyl conjugation in herbicide selectivity. Pages 231241 in Hatzios, K. K. ed. Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants. NATO ASI Series. Dordrecht, The Netherlands: Kluwer.Google Scholar
Schmitz, G. and Terres, K. 1992. Structural and functional analysis of Bz- 2 locus of Zea mays: characterization of overlapping transcripts. Mol. Gen. Genet 233:269277.CrossRefGoogle Scholar
Schröder, P. 1997. Fate of glutathione S-conjugates in plants. Pages 233244 in Hatzios, K. K. ed. Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants. NATO ASI Series. Dordrecht, The Netherlands: Kluwer.Google Scholar
Schuler, M. A. 1996. Plant cytochrome P450 monooxygenases. CRC Crit. Rev. Plant Sci 15:235284.Google Scholar
Scott-Craig, J. S., Casida, J. E., Poduje, L., and Walton, J. D. 1998. Herbicide safener-binding protein of maize. Plant Physiol 116:10831089.Google Scholar
Siminsky, B., Corbin, F. T., Ward, E. R., Fleischmann, T. J., and Dewey, R. E. 1999. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. Proc. Natl. Acad. Sci. USA 96:17501755.Google Scholar
Smith, D. R. and Walker, J. C. 1996. Plant protein phosphatases. Annu. Rev. Plant Physiol. Plant Mol. Biol 47:101125.Google Scholar
Stephenson, G. R., Bunce, J. J., Makowski, R. I., and Curry, J. C. 1978. Structure-activity relationships for S-ethyl N,N-dipropylthiocarbamate (EPTC) antidotes in corn. J. Agric. Food Chem 26:137140.Google Scholar
Stephenson, G. R. and Ezra, G. 1987. Chemical approaches for improving herbicide selectivity and crop tolerance. Weed Sci 35:(Suppl. 1). 2427.CrossRefGoogle Scholar
Streber, W. R., Kutschka, U., Thomas, E., and Pohlenz, H. D. 1994. Expression of a bacterial gene in transgenic plants confers resistance to the herbicide phenmedipham. Plant Mol. Biol 25:977987.Google Scholar
Tal, A., Romano, M. L., Stephenson, G. R., Schwan, A. L., and Hall, J. C. 1993. Glutathione conjugation: a detoxification pathway for fenoxaprop in barley, crabgrass, oat and wheat. Pestic. Biochem. Physiol 46:190199.Google Scholar
Thenaken, R., Levine, P., Brisson, L. F., Dixon, R. A., and Lamb, C. J. 1995. Function of the oxidative burst in hypersensitive disease resistance. Proc. Natl. Acad. Sci. USA 92:41584163.Google Scholar
Timmerman, K. P. 1989. Molecular characterization of corn glutathione S- transferase isozymes involved in herbicide detoxification. Physiol. Plant 77:323342.Google Scholar
Trewanas, A. 2002. Plant cell signal trasnduction: the emerging phenotype. Plant Cell 14:S3S4.Google Scholar
Walton, J. D. and Casida, J. E. 1995. Specific binding of a dichloroacetamide herbicide safener in maize at a site that also binds thiocarbamate and chloroacetanilide herbicides. Plant Physiol 109:213219.Google Scholar
Werck-Reichhart, D., Hehn, A., and Didierjan, L. 2000. Cytochrome P450 for engineering herbicide resistance. Trends Pharmacol. Sci 5:116123.CrossRefGoogle Scholar
Wiegand, R. C., Shah, D. M., Mozer, T. J., Harding, E. I., Diaz-Collier, J., Saunders, C., Jaworski, E. G., and Tiemeeier, D. C. 1986. Messeneger RNA encoding a glutathione S-transferase responsible for herbicide tolerance in maize is induced in response to safener treatment. Plant Mol. Biol 7:235243.Google Scholar
Wu, J., Cramer, C. L., and Hatzios, K. K. 1999. Characterization of two cDNAs encoding glutathione S-transferases in rice and induction of their transcripts by the herbicide safener fenclorim. Physiol. Plant 105:102108.Google Scholar
Yaacoby, T., Hall, J. C., and Stephenson, G. R. 1991. Influence of fenchlorazole-ethyl on the metabolism of fenoxaprop-ethyl in wheat, barley, and crabgrass. Pectic. Biochem. Physiol 41:296304.Google Scholar
Yenne, S. P. and Hatzios, K. J. 1990a. Influence of oxime ether safeners on glutathione levels and glutathione-related enzyme activity in seeds and seedlings of grain sorghum. Z. Naturforsch 45c:91106.Google Scholar
Yenne, S. P. and Hatzios, K. K. 1990b. Molecular comparisons of selected herbicides and their safeners by computer-assisted molecular modeling. J. Agric. Food Chem 38:19501956.Google Scholar
Zentl, R., Schell, J., and Palme, K. 1994. Photoaffinity labeling of Arabidopsis thaliana plasma membrane vesicles by 5-azido-[7-3h] indole-3- acetic acid: identification of a glutathione S-transferase. Proc. Natl. Acad. Sci. USA 91:690693.Google Scholar
Zhang, B. and Singh, K. B. 1994. ocs-Element promoter sequences are activated by auxin and salicylic acid in Arabidopsis . Proc. Natl. Acad. Sci. USA 91:25072511.Google Scholar
Zhang, J., Hamill, A. S., and Weaver, S. E. 1995. Antagonism and synergism between herbicides: trends from previous studies. Weed Technol 9:8690.Google Scholar
Zimmerlin, A. and Durst, F. 1992. Aryl hydroxylation of the herbicide diclofop by a wheat cytochrome P450 monooxygenase: substrate specificity and physiological activity. Plant Physiol 100:874881.Google Scholar