Journal of Pesticide Science
Online ISSN : 1349-0923
Print ISSN : 1348-589X
ISSN-L : 0385-1559
Regular Articles
Alleviation of norflurazon-induced photobleaching by overexpression of Fe-chelatase in transgenic rice
Joon-Heum ParkSunyo Jung
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2021 Volume 46 Issue 3 Pages 258-266

Details
Abstract

We examined the effect of Bradyrhizobium japonicum FeCh (BjFeCh) expression on the regulation of porphyrin biosynthesis and resistance to norflurazon (NF)-induced photobleaching in transgenic rice. In response to NF, transgenic lines F4 and F7 showed lesser declines in chlorophyll, carotenoid, Fv/Fm, ϕPSII, and light-harvesting chlorophyll (Lhc) a/b-binding proteins as compared to wild-type (WT) plants, resulting in the alleviation of NF-induced photobleaching. During photobleaching, levels of heme, protoporphyrin IX (Proto IX), Mg-Proto IX (monomethylester), and protochlorophyllide decreased in WT and transgenic plants, with lesser decreases in transgenic plants. Most porphyrin biosynthetic genes were greatly downregulated in WT and transgenic plants following NF treatment, with higher transcript levels in transgenic plants. The expression of BjFeCh in transgenic rice may play a protective role in mitigating NF-induced photobleaching by maintaining levels of heme, chlorophyll intermediates, and Lhc proteins. This finding will contribute to understanding the resistance mechanism of NF-resistant crops and establishing a new strategy for weed control.

Content from these authors
© Pesticide Science Society of Japan 2021. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License (https://creativecommons.org/licenses/by-nc-nd/4.0/)

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top