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Abstract: A multilateration system estimates the position of emitter using time difference of 

arrival (TDOA) measurements with a lateration algorithm. It involves solving a set of 

hyperbolic plane equations to determine the position of the emitter given the TDOA 

measurements that corresponds to the path difference (PD) measurement in distance. A 

performance model is developed using the relative maximum error bound (RMEB) which 

relates the plane equation condition number, the relative ground receiving station (GRS) 

geometry and the PD measurement error to estimate the position estimation (PE) error. By 

using air traffic monitoring for civil aviation as an application, Monte Carlo simulation 

verifies the PE error of the performance model for a square GRS configuration. The coverage 

assumed a 3600 bearing, a range of up to 200 km and a maximum altitude of 15 km. 

Simulation results also show that the performance model estimates the horizontal position 

error with a maximum absolute error of 0.1 km up to a range of 200 km at an altitude of 15 

km and a minimum absolute error of 0.2 km at an altitude of 15 km. 

 

Keywords: Multilateration, Time difference of arrival (TDOA), Performance model, least 

square error bound. 

 

1. Introduction 

The emitter locating technique used in navigation, air traffic monitoring regulatory body and 

military consists of a two-stage process [1]. The first stage estimates the position-dependent 

signal parameters such as time of arrival (TOA), angle of arrival (AOA), time difference of 

arrival (TDOA) and received signal strength (RSS). The second stage uses the estimated 

position-dependent signal parameters as input to a localization algorithm such as lateration, 

angulation, and fingerprinting to determine the location of emitter. Multilateration locates a 

target from its electronic emission by measuring the TDOAs from a network of spatially-located 

GRSs. The TDOA measurements form the position-dependent signal parameters [1, 2] which 

are then used by the lateration algorithm to estimate the position of the aircraft [1, 3]. Depending 

on the number of GRSs deployed, the position of the aircraft may be estimated either in 2-

dimension (2-D) (𝑥, 𝑦) or 3-dimension (3-D) (𝑥, 𝑦, 𝑧) [2]. A minimum of four (4) GRSs is 

required to estimate the 3-D position of an aircraft. 

TDOA estimation methods reported in various articles can be grouped as [1, 3, 4]: indirect 

and direct. The indirect method involves estimating the TOA of the signal at each GRS and the 

TDOA is estimated from the difference between a TOA pair. This method can only be used when 

there is a definite pulse edge of the signal to measure [2].  Several techniques for TOA estimation 

has been reported [5–8]. The most commonly used technique is the leading-edge detection used 

for secondary surveillance radar (SSR) signals [7, 8]. In the direct method, the TDOA is 

estimated directly from the signal received from a GRS pair. The most commonly used method 

applies the cross-correlation between a GRS pair to estimate the TDOA [2, 9, 10]. Other direct 

methods for TDOA estimation are generalized cross-correlation (GCC) [11], high-order statistic 

(HOS) [10], least mean squares (LMS) adaptive filter [10], average squared difference function 

(ASDF) and average magnitude difference function (AMDF) [10]. Direct methods operate 

directly  on  the  signal  without  any  knowledge  of  the  signal  parameter  o structure. Thus, a  
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sufficiently large bandwidth and reliable data link are required between the GRSs to reach the 

processing center. Otherwise, the indirect method is preferable [2].   

From the estimated TDOA and GRS positions, the second as well as the final stage is the 

position estimation (PE) of the emitter using the lateration algorithm. N numbers of GRSs with 

a single GRS as reference results in N-1 nonlinear hyperbolic equations that describe the TDOA 

measurement input and the position of emitter [12]. Due to this nonlinearity, several methods are 

developed to solve these equations [12–25] either in linear/closed-form method or 

nonlinear/open-form method [1, 12]. In the nonlinear method, the first step is to linearize the 

nonlinear hyperbolic equations using series expansion such as the Taylor series expansion 

method [13–15]. An initial random position of emitter is first inputted and iteratively refined to 

the final position estimate by minimizing the least square (LS) cost function. The nonlinear 

approach has limitations for real-time application since the PE solution convergence depends on 

the difference between the initial PE estimates with the actual position of emitter [15]. For the 

linear method, the algebraic manipulation of a pair of hyperbolic equations results in a single 

linear plane equation with the position of emitter as the unknown variable [16–22]. The resulting 

plane equation is expressed as: 

xB yC zD A    (1) 

The result where the coefficients 𝐴, 𝐵, 𝐶, and 𝐷 depends on TDOA estimates and GRS 

coordinates. The linear approach has no convergence issue since it does not require the estimate 

of the initial position of emitter [15]. It is faster than the nonlinear method but is very sensitive 

to the input measurement error.  

 Most of the published work emphasized on reducing the PE error of the lateration algorithm 

at high TDOA estimation error [17, 20, 23–25] or on performance analysis [18, 19]. The use of 

multiple GRSs as references provides further improvement on the PE accuracy of emitter [17, 

23]. However, this paper focused on a performance model to predict the PE error for a 

multilateration system. Application based on air traffic monitoring for civil aviation verifies the 

performance model. Multilateration is a surveillance technology that complements existing 

systems such as primary surveillance radar (PSR), SSR and automatic surveillance- dependent-

broadcast (ADS-B) [26, 27]. Documents from international bodies such as the International Civil 

Aviation Organization (ICAO) [4] or manufacturers [27–29] only specify the PE error but not 

the range, and the link with the transmitter and receiver parameters such as transmit power, 

sensitivity and antenna gain.  Therefore, the proposed performance model allows a systematic 

approach to predict the coverage and plan for future deployment of multilateration system.  

 Multilateration estimates emitter position using the geometrical relationship between the 

GRS configuration and the emitter [30]. This means the accuracy in the PE depends on the GRS 

configuration. Several studies are carried out on the best GRS configuration for high PE accuracy 

[14, 30–32]. For a few GRSs of 4 or less, simple configurations such as squares and equilateral 

triangles result in better PE accuracy. The minimum number of GRS for 3-D PE with 

multilateration is 4. It was shown by Chan et al. [31] that square configuration of four GRSs 

performances better than the collinear GRS configurations. Since the four GRSs are considered 

in this work, the square GRS configuration is adopted. 

 A linear multiple reference lateration algorithm is developed for a 3-D multilateration system 

with a square GRS configuration. Based on the relative maximum error bound (RMEB) and 

linear regression, the performance model is developed to predict the PE error using the plane 

equation condition number, GRS coordinates, transmitter parameters, and receiver parameters. 

The PE error comparison between the performance model and the Monte Carlo simulation 

assumed a square GRS configuration with a GRS pair separation of 10 km. 

 The organisation of the paper is as follows. Section 2 describes the sources of error and the 

type of signals received by the multilateration system. The PE methodology is introduced in 

section 3, while the proposed methodology for PE error is derived in section 4.  Simulation 

results and discussion based on a frequency band of 1090 MHz, which are used by the SSR and 

ADS-B for air traffic monitoring in civil aviation is presented in section 5, followed by the 

conclusion. 
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2. Multilateration Signals and Error  

 The target application for the multilateration system is for air traffic monitoring in civil 

aviation since the position of aircraft is represented in 3-D: latitude, longitude, and altitude. 

Besides communication purposes, the electronic emission produced by an aircraft is also used 

for PE such as ADS-B, SSR, weather radar and weapon control radar [4, 18] . The ADS-B and 

SSR operate at 1090 MHz band while weather radar and weapon control radar operate in the X-

band (8–12 GHz) [2]. For air traffic monitoring, the multilateration system operates on the ADS-

B and SSR to locate the aircraft.   

 The accuracy in the PE primarily depends on the accuracy of the TDOA estimate [33], the 

number of GRSs and their configurations [34]. In addition, the sources of error are natural errors 

and system errors [33]. Natural errors include noise floor due to thermal noise while path loss 

attenuation and multipath fading affect the actual signal-to-noise ratio (SNR) of the signal. 

System error is mostly related to system hardware including quantization error and antenna error. 

In this research, the major contributor to the TDOA measurement error is the thermal noise 

modelled as additive white Gaussian noise (AWGN), quantified by the SNR. 

 

3. Position Estimation Methodology 

 This section first describes the linear method lateration algorithm using two references of 

GRS followed by a discussion on the location of blind spots in the PE process.  

 

A. Two Reference Lateration Algorithm   

 Given the position of an emitter in the Cartesian coordinate [𝑥, 𝑦, 𝑧]𝑇and the position of the 

i-th GRS as [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖]
𝑇 for 𝑖 = 1,2,3, and 4, the Euclidean distance (path distance) between the 

emitter and the i-th GRS is calculated as:  

      
2 2 2

i i i i id c x x y y y y         (2) 

where c is the speed of light at 3× 108 m/s and  𝜏𝑖 is the TOA at the i-th GRS.  

Using Eq. (2), the path difference (PD) between the i-th and the j-th GRS pair is given as:  

      
 

           
2 2 22 2 2

ij i j i j

i i i j j j

d d d c

x x y y z z x x y y z z

     

           

 (3) 

 For simplicity, using GRS 1 and GRS 2 as a reference pair for TDOA estimation [22] 

and  𝑑𝑖𝑗 = −𝑑𝑖𝑗  , the 4 PD equations are given as: 

 13 1 3d d d   (4a)

 14 1 4d d d   (4b)

  
23 2 3d d d   (4c)            

 24 2 4d d d              (4d)

   

Substituting Eq. (3) into Eq. (4) results in two plane equations in the form 

 134 134 134 134A xB yC zD    (5)

 234 234 234 234A xB yC zD    (6) 

 

where the coefficients of Eq. (5) and Eq. (6) are 
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Rearranging Eq. (5) and Eq. (6) in matrix form results in 
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 The derivation details from Eq. (4) to Eq. (8) can be found in [1, 3, 18, 22] and are not 

included in this paper due to complexity.  Eq. (8) is an underdetermined least square (LS) 

problem where no unique solution exists [35]. If 𝑁 ≥ 5 GRSs, the matrix Eq. (8) will be full-

ranked or over-determined and can be solved using LS method. Assuming the GRS height 

differences are negligible  

 0ij i jZ z z   for 𝑖𝜖 [1,2]and  𝑗𝜖[3, 4] (9)

  

The coefficients of z from Eq. (5) and Eq. (6) become zero, that is 𝐷134 ≈ 𝐷234 ≈ 0. 

Rewriting the matrix Eq. (8) results in 

 

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 Qx a                                                                                                                              (10b) 

           

The horizontal position (𝑥, 𝑦) obtained by matrix inversion in Eq. (10) is substituted back into 

Eq. (4a) producing  

      21

2

1

2

1

2
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13

13
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3113
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zzyyxx
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By simplifying Eq. (11) as a quadratic equation, the altitude is estimated by solving  

    21

2

11 zyxxwzz  (12) 
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 In surveillance system for air traffic monitoring, target locations are defined in the cylindrical 

coordinate system (𝑅, 𝜃, 𝑧) where R is the horizontal range of the target taken from the reference 

point, 𝜃 is the bearing in degree and 𝑧 is the target altitude taken from the sea level [36]. The 

following equation converts cylindrical coordinate system to Cartesian coordinate system 

  cosx R    (14a)

 siny R                                                                                                           (14b)

           

B. Position Estimation Process Blind Spots 

 For a given GRS configuration, blind spots occur when the PD estimated between a GRS 

pair is zero.  As a result, some of the variables in Eq. (7) become infinite, making it impossible 

to use Eq. (10) to solve the position of emitter.  Given i-th and j-th GRSs at position (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) 

and (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) respectively, a blind spot exits if  

 0 jiij ddd  (15)          

 To obtain the mathematical representation of the blind spot in range (𝑅 ) and bearing (𝜃), 

substituting Eq. (15) into Eq. (3) results in  

   jijijiji KZzYXRzR 5.0sincos),,(    (16)

            

where the coefficients of Eq. (16) are 

 
ji j iX x x   (17a)    

 ji j iY y y                                                                                                           (17b)      

 
ji j iZ z z                                                                                                                        (17c)          

 2 2 2 2 2 2( ) ( )ij i i i j j jK x y z x y z                                                                                 (17d)

            

 Using the GRS position pair of (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) and (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) , the target range R and bearing 𝜃 

that makes Eq. (16) zero value is the blind spot. The location of blind spot varies with the choice 

of the GRS reference pair.  

 

4. Proposed Position Estimation Error Methodology 

 The PE methodology described in section 3 as shown in Figure 1 consists of two stages: 

horizontal PE error and vertical PE error. The performance model provides the PE error for a 

given position of emitter, position of GRS and path difference estimation (PDE) error. 

 

 
Figure 1. Position estimation error process. [∆x is the error in x coordinate, ∆y is the error in y 

coordinate and ∆z is the error in z coordinate]. 
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A. Horizontal PE Error 

 The error in the horizontal position (𝐱) obtained from Eq. (10) is due to the TDOA 

measurement error that is proportional to the PDE error in distance.  This is reflected by the 

sensitivity of matrix Q from the plane equation in Eq. (10) which is known as the plane equation 

condition number denoted by 𝐾(𝐐). The RMEB defined by Eq. (18) relates the condition 

number, the relative emitter horizontal PE error matrix, and the relative GRS geometry and the 

PD measurement matrix error [35]. 

  2 2 2

2 2 2

K
   

    
 

x Q a
Q

x Q a

          (18) 

where ∆𝐱 = [∆𝑥, ∆𝑦] is the emitter horizontal PE error, 
‖∆𝐱‖2

‖𝐱‖2
 is the relative emitter horizontal PE 

error, (
‖∆𝐐‖2

‖𝐐‖2
+

‖∆𝐚‖2

‖𝐚‖2
) is the relative input error matrix which is related to the position of GRS 

and PD measurement from  Eq. (7),  and ‖ ‖2 is the L2 matrix norm which is also known as the 

spectral norm. Detailed descriptions of L2 matrix norm and L2 vector norm can be found in [39].  

The proposed performance model to determine the horizontal PE error is derived by transforming 

(18) into a representation that is a function of the plane equation condition number  𝐾(𝐐), the 

position of emitter (𝑅, 𝜃, 𝑧), GRS positions (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) and PDE error (∆𝑑).  Linear regression 

curve fitting is used for this purpose and the procedure of estimating the horizontal PE error ∆𝐱  

initiated by finding the plane equation condition number 𝐾(𝐐) for each position of 

emitter (𝑥, 𝑦, 𝑧).  The next step is deriving the relative GRS geometry and PD matrix error 

(
‖∆𝐐‖2

‖𝐐‖2
+

‖∆𝐚‖2

‖𝐚‖2
) as a function of PDE error (∆𝑑) and PD measurement matrix (see Appendix A). 

Consequently, the resulting function is expressed as follows: 
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2 2 1 1
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d d d d
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d d d d
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Q a

  (19)

            

By substituting Eq. (19) into the of Eq. (18), the RMEB is now 

 

1
2 2 1 1

13 14 13 14

2 2 1 1

24 23 24 232 2

( )RMEB

d d d d
R K d

d d d d


   
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   
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   
Q  (20)

            

 The main objective here is to use 𝑅𝑅𝑀𝐸𝐵 to predict the performance of the multilateration 

system using Eq. (20). A correction factor α is introduced to correlate the measured relative 

horizontal PE error and the relative horizontal PE error (𝑅𝑅𝑀𝐸𝐵) from Eq. (20).  This correction 

factor depends primarily on the emitter bearing relative to the center of the GRS configuration. 

For a given position of emitter with a bearing of 𝜃, the measure horizontal PE error, 𝑅𝐴𝐶  is  

  AC RMEBR R    for 0 ≤ 𝜃 ≤ 360° (21)            

 Using linear regression, the value of the correction factor α for emitters with a bearing of 00 

and 3600 can be determined by minimizing the error defined by Eq. (22) using linear regression   

 
 

 
2

arg min ( )AC RMEBE R R
 

     (22)           

Taking the derivative of Eq. (22) with respect to α and solve for  𝜕𝐸
𝜕𝛼⁄ = 0 , results in 

   2

2

2
( )

AC RMEB

RMEB

R R

R
 


  (23)           

The resulting expression for  𝛼(𝜃) in Eq. (23) for a square GRS configuration is:  

 
          

  

4 3 2

2.768 sin 2.598 sin 0.432 sin

0.6697 sin 0.013

    



      

  

            (24) 
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 Since the error is minimal, the relative horizontal PE error  (
‖∆𝐱𝒑𝒎‖

2

‖𝐱‖2
) for the performance 

model can now be expressed as:  
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From Eq. (25) the horizontal PE error for the performance model is expressed as:  

  

1
2 2 1 1

13 14 13 14

2 2 1 1 22
24 23 24 232 2

( )pm

d d d d
k d

d d d d
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Δx Q x  (26)            

  Eq. (26) is the performance model for the horizontal PE error for multilateration. Using vector 

analysis, the components of the horizontal PE error (∆𝐱) obtained from the position of emitter 
(𝑥, 𝑦) are 

 
2pm

x
x

x y
   


x  (27a)          

 
2pm

y
y

x y
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
x                                                                                                (27b)

            

Finally, the components of the estimated horizontal position (𝐱̂) are  

  ˆ ˆ ˆx, yx  (28)

              

where x̂ x x    and ŷ y y     

The estimated horizontal position 𝐱̂ is used together with ∆𝑑 to estimate the altitude error z   in 

the next section. 

 

B. Altitude Estimation Error 

 The estimated horizontal position in Eq. (28) is used to obtain the altitude error by 

substituting Eq. (27) and ∆𝑑 into Eq. (12). The estimated altitude of emitter is 

    
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ˆ ˆ ˆẑ z w x x y y       (29)
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 (30a)          

 
13 13

ˆ (0, )d d N d                                                                                                              (30b)         

      2 2 2 2 2 2

13 1 3 1 3 1 3K x x y y z z       (30c)

            

 To obtain the altitude error (∆𝑧), the result from Eq. (29) is subtracted from a known altitude 

of emitter, ˆz z z    and the altitude error for the performance model is  

     2

1 1 1
ˆ ˆ ˆz z w x x y y z         (31)

             

 A performance model for predicting PE error of a 3-D position of emitter using 

multilateration system based on the minimum GRS configuration is derived. Next section 

validates the performance model by comparing with the Monte Carlo simulation.  
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5. Simulation Parameters, Results and Discussion 

 This section first presents the simulation parameters followed by the comparison between the 

developed performance model and the Monte Carlo simulation. 

 

A. Simulation Parameter  

 The root-mean-square error (RMSE) of the position is used as the performance measure to 

compare the result of performance model with that of Monte Carlo simulation. For N-realization 

Monte Carlo simulation, the following equations define the RMSE of the horizontal position and 

altitude 

 
 

22

1

ˆ ˆ( )

 

N

i i

i
rmse

x x y y

H
N



   
 


 , 

2

1

ˆ( )
N

i

i
rmse

z z

Alt
N








 (32)

              

where (𝑥, 𝑦, 𝑧) is the known position of emitter while (𝑥̂𝑖 , 𝑦̂𝑖 , 𝑧̂𝑖) is the estimated position of 

emitter at the i-th Monte Carlo realization.  

 Table 1 shows the parameters on the position of emitter in terms of range, bearing, and 

altitude. The 3-D emitter PE is possible if all four GRSs are at line of sight (LOS) with the 

emitter. The LOS very much depends on the curvature of the earth. For example, the LOS at an 

altitude of 1km is available for all GRSs with a range of up to 130km while at 7km and 15km, 

LOS is available up to a range of 200 km.   

 

Table 1. Emitter position parameters. 

No. Emitter parameters Values 

1 Horizontal range 1 km to 200 km 

2 Altitude 1 km, 7 km and 15 km 

3 Bearing 00 to 3590 

 

 The GRSs are arranged in a square configuration and the separations of 4 different GRS pairs 

are considered. Table 2 describes the position of each GRS at a separation of 5km, 10km, 20km 

and 30km.  

 

Table 2. Position of each GRS for various GRS pair separation. 

No GRS label 

5 km 

separation 

10 km 

separation 

20 km 

Separation 

30 km 

Separation 

x (km) y (km) x (km) y (km) x (km) y (km) x (km) y (km) 

1 GRS 1 -2.5 2.5 -5 5 -10 10 -15 15 

2 GRS 2 2.5 -2.5 5 -5 10 -10 15 -15 

3 GRS 3 2.5 2.5 5 5 10 10 15 15 

4 GRS 4 -2.5 -2.5 -5 -5 -10 -10 -15 -15 

 

 The PE performance is evaluated based the SSR and ADS-B applications used in the civil 

aviation and the simulation parameters are shown in Table 3. A transponder that transmits a 

power of 250 Watts is selected as it corresponds to the type of transponder used on board aircraft 

capable of flying at an altitude of 15,000 feet (4.6 km) and above [37], and the receiver 

parameters used are based on the actual system used in the aviation industry [28].  

Table 3. Simulation parameters 

No. Parameter Value 

1 Transmit power 250 Watt 

2 Carrier frequency 1090 MHz 
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3 GRS receiver sensitivity -90 dBm 

4 GRS antenna gain 12 dBi 

5 Transmitter antenna gain 3dBi 

 

B. Simulation Results and Discussion  

 This section validates the performance model with Monte Carlo simulation for the PE error. 

First, the effect of receiver separation on the PE error is estimated, followed by the relationship 

between the PDE error and the effective SNR for different sampling rates. Using the PDE error, 

the position error is derived for each position of emitter. Finally, Monte Carlo simulation verifies 

the position error obtained by the performance model.  

  

B.1. PE Error versus Receiver Separation 

  

 
 

 

 
 

Figure 2. PE error versus PDE error standard deviation for various GRS separation. [Emitter is 

at bearing of 600 and altitude of 1 km]. 

 

 The PDE error modelled as a zero-mean Gaussian random variable is introduced into the PD 

in Eq. (4), and the PE is then estimated using Eq. (10) and Eq. (12). Signal attenuation due to 

path loss determines the received SNR. Monte Carlo simulations conducted based on 100 

realizations for PDE error have a standard deviation range of 1 to 4 meters at selected positions 

of emitters with the range of 5 km, 50 km, 100 km and 150 km to determine the effect of GRS 

separation on the PE error. Figure 2 shows the PE error comparisons for different GRS 

separations at different positions of emitters. The PDE error standard deviation generally 

increases with the PE error. At an emitter range of 5km and a PDE error of 2 meters, the PE error 

for GRS separations of 5 km, 10 km, 20 km and 30 km are 0.02 km, 0.015 km, 0.03 km, and 

(a)  Emitter range 5 km 

 

(b) Emitter range of 50 km 

 

(c) Emitter range 100 km (d)Emitter range of 150 km 
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0.04 km, respectively. At an emitter range of 50km and a PDE error of 2 meters, the PE error for 

the GRS separations are 2.51 km, 0.52 km, 0.12 km, and 0.06 km, respectively. For a shorter 

emitter range at less than 5km and a large GRS separation of 30 km, a high PE error of 0.04 km 

is obtained while a larger emitter range of 150 km produce a small PE error of 0.04 km. On the 

average, the 10 km GRS separation always gives the best performance in term of PE error versus 

PDE error. 

 

B.2. PDE Error versus Receiver Sampling Frequency 

  The TDOA measured between two signals is obtained from the peak of cross-correlation. 

Multiplying the measured TDOA with the speed of light in (2) estimates the PD. Factors that 

contribute to TDOA measurement errors are noise and sampling frequency.  Based on 100-

realization Monte Carlo simulation, PDE error versus effective SNR comparison was made at 

the receiver sampling frequencies of 40 MHz and 160 MHz. The existing software-defined radio 

(SDR) technologies available to be implemented forms the basis for selecting the sampling 

frequencies [27]. Figure 3 shows the PDE error versus effective SNR comparison for the two 

sampling frequencies. In general, the PDE error decreases exponentially with the effective SNR 

from 0 dB to 25 dB. However, the PDE error is lower for the sampling frequency of 160 MHz 

compared to 40 MHz. At an effective SNR of 4 dB, the resulting PDE errors for receiver 

sampling frequencies of 40 MHz and 160 MHz, are 30.13 meters and 14.56 meters respectively 

while at an effective SNR of 18 dB the PDE error values are 1.7 meters and 0.88 meters. The 

actual relationship between the SNR and PDE errors very much depends on the algorithms to 

estimate the TDOA. Various methods for TDOA estimation are described in [2, 9, 11]. 

 
Figure 3. Cross correlation based PDE error versus effective SNR 

 

 Using curve fitting techniques, a mathematical equation for the relationship between the PDE 

error and the effective SNR is derived. The following equation describes the relationship 

between the PDE error (∆𝑑) and the effective SNR (𝑆𝑁𝑅𝑒𝑓𝑓) for the sampling frequency of 

160MHz 

 
32.6 exp( 0.1984 ) 0 25

0 25

eff eff

eff

eff

SNR SNR

d

SNR

     


  
 

 (33)

                      

Thus, the PDE error can be estimated for a range of effective SNR. 

B.3. PE Error Comparison 

 Using the PDE error obtained from the previous section for different positions of emitter 

based on the GRS separation of 10 km and the sampling frequency of 160 MHz, Monte Carlo 

simulation compares the performance model in terms of horizontal PE error and altitude PE error 

at 500 realizations for emitter range and bearing at intervals of 5 km and 7.50 respectively. The 

selected intervals are to reduce the computational time of Monte Carlo simulation and to ensure 

sufficient results for comparison. The GRS 1 and GRS 2 when used as the GRS reference pair 
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results in blind spots along bearings of emitter at 00, 900, 1350, 1800, 2700 and 3150, which are 

indicated by the black dash line in the plots.    

 

a. Horizontal PE error 

  Figure 4 compares the horizontal PE errors obtained using the performance model defined 

by Eq. (27) with that of Monte Carlo simulation results. The comparison between Monte Carlo 

and the performance model shows that the horizontal PE accuracy of emitter depends on the 

position of emitter. The horizontal PE error increases exponentially with an increase in the 

emitter range from 1 km to 200 km. The absolute error of the performance model is compared 

with the Monte Carlo simulation results. The performance model for horizontal PE error defined 

by Eq. (27) predicts the error in the horizontal position of emitter is compared to the Monte Carlo 

simulation with an absolute error difference of 0.1 km for an emitter range of 1 km to 200 km 

based on the GRS separation of 10 km. Thus, the proposed horizontal PE performance model 

predicts the error in the horizontal position for a given PDE error with a prediction error of 0.1 

km compared to the Monte Carlo simulation results.  

 

 
Figure 4. Horizontal PE error comparison between the performance model and the Monte Carlo 

simulation for emitter range up to 200 km [10 km GRS separation]: (a) Monte Carlo 

simulation, (b) Performance model. 

 

 b. Altitude Estimation Error 

 This section compares the altitude estimation error of the performance model defined by Eq. 

(31) with the Monte Carlo simulation results. Figure 5 shows the altitude estimation error based 

on the position of emitter shown in Table 1 using a GRS separation of 10km.  The error in the 

altitude estimation depends on the altitude of emitter and the range of emitter. The altitude 

estimation error decreases with the increase in emitter range from 1 km to 200 km and the 

increase in altitude of emitter from 1 km to 15 km. Table 4 summarizes the performance model 

for altitude estimation error at various altitudes. The performance model predicts the altitude 

error with a minimum absolute altitude error of 0.2 km at an altitude of emitter of 15 km up to a 

range of 200 km and a maximum absolute altitude error of 0.8 km at an altitude of 1 km up to a 

range of 100 km.  

 Thus, the proposed performance model does not accurately predict the altitude error. This is 

due to the quadratic relation between the input and the output as seen in Eq. (31) which results 

in magnitude-squared error that decreases with the increase in altitude level.  

Table 4. Altitude estimation error based on the performance model for various ranges and 

altitudes. 

 
No. GRS Altitude Emitter Absolute Altitude 

 

    (a)                                                                                     (b) 
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separation 

(km) 

levels 

(km) 

Range 

(km) 

error (km) 

1 

10 

1 0 to 100 0.8 

2 7 0 to 200 0.5 

3 15 0 to 200 0.2 

 

 
(a) 1 km emitter altitude 

 

 
(b) 7 km emitter altitude 

 

 
(c) 15 km emitter altitude 

Figure 5. Comparison between performance model with Monte Carlo simulation for altitude 

estimation error at 10 km GRS separation. 

 

6. Conclusion 

 A 3-D multiple-reference multilateration algorithm using minimum GRS is proposed and the 

performance model for PE error is developed. A square GRS configuration is assumed for the 

performance model for emitters locating within a bearing of 3600, with a range of up to 200 km 

and a maximum altitude of 15 km. The characteristics of emitters are based on the ADS-B 

transponder used in civil aviation. Verification of the model with Monte Carlo simulation shows 

that the performance model estimates the maximum horizontal PE error of 0.1 km for a range of 

200 km and an altitude error of 0.2 km at an altitude of 15 km. The performance model also 

predicts the blind spots in the emitter locating coverage. Thus, the performance model predicts 

the horizontal PE error and the error at high altitudes for a minimum configuration 
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multilateration system with a square GRS configuration. However, the performance model does 

not provide the optimal solution that minimizes the PE error. 
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Appendix A: Derivation of relative GRS geometry and PD matrix error as a function of PDE 

error and PD measurement matrix 

 This appendix discusses on how the relative GRS geometry and PD matrix error 

(
‖∆𝐀‖𝟐

‖𝐀‖𝟐
+

‖∆𝐛‖𝟐

‖𝐛‖𝟐
) is expressed as a function of PDE error (∆𝒅) and PD measurement matrix. Let 

the coordinates of GRS 1, GRS 2, GRS 3 and GRS 4 in rectangular coordinate system be 
(𝐱𝟏, 𝐲𝟏, 𝐳𝟏, ), (𝐱𝟐, 𝐲𝟐, 𝐳𝟐, ), (𝐱𝟑, 𝐲𝟑, 𝐳𝟑, ) and (𝐱𝟒, 𝐲𝟒, 𝐳𝟒, ) respectively. From Table 2 in Section 

5.1, the following equations can be derived for the square ground receiving station (GRS) 

configuration: 

 
1

0.5
rec

x d   , 
2

0.5
rec

x d   
3

0.5
rec

x d  , 
4

0.5
rec

x d                          (A.1a)

   

 
1 0.5 recy d  , 

2 0.5 recy d   ,  
3 0.5 recy d  , 

4 0.5 recy d                      (A.1b) 

 

where 𝑑𝑟𝑒𝑐  is the GRS pair separation.  

Substituting (7) into matrix (10a), using GRS 1 and GRS 2 as reference pair, the entries of matrix 

Q are 

 

3 1 3 14 1 4 1

13 14 13 14

3 2 3 24 2 4 2

23 24 23 24

x x y yx x y y

d d d d

x x y yx x y y

d d d d

      
     

    

 
          
     

Q
                                                          (A.2)

   

and matrix a  

 

1 31 4
14 13

14 13

2 32 4
24 23

24 23

0.5

K KK K
d d

d d

K KK K
d d

d d

  
    

  
 

 
     
   

a
                                                                   (A.3)

   

where  

      
2 2 2

i i i iK x y z   for 𝑖𝜖[1,2,3,4]                                                                               (A.4) 

 

 Substituting Eq. (A.1) into Eq. (A.2), the matrix Q can be written as a function of 𝑑𝑟𝑒𝑐  and 

PD measurements. That is 

 
13 14 13 14

23 24 23 24

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
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                                                                                                                                              (A.5a) 
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24 23
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                                                                      (A.5b)
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1 1

13 14
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24 23
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d d
d

d d

 
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Eq. (A.5d) is the representation of matrix Q as a function of the PD measurement and GRS pair 

separation. Substituting Eq. (A.1) into Eq. (A.3), the matrix a of Eq. (A.3) can be further 

simplified to: 

    
 

 
14 13

24 23

0.5
d d

d d

 
   

 
a                                                                                                      (A.6) 

Since  

 

           

           

           

           

2 2 2 2 2 2

1 4 1 4 1 4 1 4

2 2 2 2 2 2

1 3 1 3 1 3 1 3

2 2 2 2 2 2

2 4 2 4 2 4 2 4

2 2 2 2 2 2

2 3 2 3 2 3 2 3

0

0

0

0

K K x x y y z z

K K x x y y z z

K K x x y y z z

K K x x y y z z

       

       

       

       

                                                   (A.7)

   

Assuming there is an error in the PD measurement, the perturbed version of matrix Q is obtained 

as: 

 
1 1

13 14

1 1

24 13

( ) ( )
ˆ

( ) ( )

eff eff

rec

eff eff

d d d d
d

d d d d

 

 

   
  

    

Q                                                                         (A.8)

   

where ∆𝑑𝑒𝑓𝑓  is the PDE error that corresponds to the effective SNR which is obtained using (33) 

and that of matrix a is: 

 14 13 14 13

24 23 24 23

( ) ( )
ˆ 0.5 0.5

( ) ( )

d d d d d d

d d d d d d

      
      

       
a                                                                        (A.9)

  

The error in matrix Q due to ∆𝑑 is calculated as:  

 

1 1 1 1

13 14 13 14

1 1 1 1

24 23 24 23

2 2

13 14

2 2

24 23

( ) ( )ˆ
( ) ( )

rec

rec

d d d d d d
d

d d d d d d

d d
d d

d d

   

   

 

 

       
                 

 
    

 

Q Q Q

                                            (A.10) 

      

The error in matrix a due to ∆𝑑 is calculated as: 

 14 13 14 13

24 23 24 23

ˆ 0
d d d d

d d d d

    
        

    
a a a                                                                                                (A.11)

   

The relative error in matrix Q, (
‖∆𝐐‖2

‖𝐐‖2
) is obtained as: 
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1

2 2 1 1

13 14 13 142 2

2 2 1 1

24 23 24 232 2 2 2

d d d d
d

d d d d


   

   

      
          

    

Q a

Q a

                                (A.12)
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