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Abstract—A challenging topic in articulated robots is the
control of redundantly many degrees of freedom with artificial
muscles. Actuation with these devices is difficult to solve because
of nonlinearities, delays and unknown parameters such as fric-
tion. Machine learning methods can be used to learn control of
these systems, but are faced with the additional problem that the
size of the search space prohibits full exploration in reasonable
time. We propose a novel method that is able to learn control of
redundant robot arms with artificial muscles online from scratch
using only the position of the end effector, without using any joint
positions, accelerations or an analytical model of the system or
the environment. To learn in real time, we use the so called online
“goal babbling” method to effectively reduce the search space,a
recurrent neural network to represent the state of the robotarm,
and novel online Gaussian processes for regression. With our
approach, we achieve good performance on trajectory tracking
tasks for the end effector of two very challenging systems: a
simulated 6 DOF redundant arm with artificial muscles, and a 7
DOF robot arm with McKibben pneumatic artificial muscles. We
also show that the combination of techniques we propose results
in significantly improved performance over using the individual
techniques alone.

I. I NTRODUCTION

For articulated robots, pneumatic actuators have grown in
popularity and found increasing use in biorobotics, medical,
industrial and aerospace applications [1]. Pneumatic artificial
muscles (PAMs), such as the McKibben artificial muscle [16],
are favourable for developing biologically inspired robots since
they are backdriveable, have high flexibility, and a high power-
to-weight ratio, similar to biological muscles. As a result,
PAMs have often been used to drive the structural parts
of complex anthropomorphic musculoskeletal robots. On the
other hand, PAMs generally exhibit very strong nonlinearity,
and their response is often delayed. For individual PAMs and
single-DOF systems, there have been several proposals for
analytical models [6, 12, 7]. When these are combined for use
in a multi-DOF robot, it is, however, extremely hard to model
the dynamics analytically for accurate motion control. In fact,
related studies, using well-established methods from control
theory, had to resort to limiting the number of DOF of the

systems being modeled, and/or address the the problem only
in the context of static tasks like position control [3, 21, 2].

Machine learning techniques have played an important role
in modeling the complex dynamics of a manipulator driven by
PAMs in [10, 8]. In these studies, feedforward neural networks
were used to model the complex inverse dynamics of the ma-
nipulator, and feedback error learning [11, 13] was employed
to train the networks. However, as the structure of PAM-driven
robots gets more complex, expressing its dynamics in the form
of a static mapping is becoming difficult. Additionally, in
order to employ feedback error learning to realize trajectory
tracking of an end effector, an initial feedback controller
has to be provided, requiring an inverse kinematics model
in advance. Here, we aim for a model-free approach to the
control problem. Other relevant methods for learning dynamics
of high-DOF systems in real time include for example “locally
weighted learning” [20].

In order to deal with the increasing difficulty of learning the
inverse dynamics of musculoskeletal robots driven by PAMs,
in this work, we combine a variant of goal babbling [19] with
an echo state network (ESN) [9], a particular kind of recurrent
neural network, to represent the state of the system. Gaussian
process regression (GPR) is used to train the network in real-
time (see Sects. II-A, II-B, and II-C for more details on goal
babbling, ESNs, and GPR, respectively).

ESNs [9] have recently become more prominent in the field
of robotics, e.g., for learning the inverse kinematics of an
industrial robot [18]. However, to the best of our knowledge,
ESNs have not been successfully applied to musculoskeletal
robots and inverse dynamics yet, despite their known ability
to provide highly nonlinear mappings, and a fading memory
of past inputs. We employ these features of ESNs to represent
the state of a redundant robot arm with artificial muscles, and
thereby implicitly compute information such as velocity or
acceleration relevant for inverse dynamics tasks.

Gaussian process regression has been applied in previous
work in [4] as well as [14, 15] to learn robust inverse dynamics
on industrial robot arms. The latter authors succeeded to



use GPR in a real-time setting, and demonstrated that this
method outperforms other state of the art learning methods for
inverse dynamics. A notable difference of these approaches
to our work is that GPR was only used on industrial robot
arms and did not have to face the challenges associated with
musculoskeletal robots like elastic deformation of the actuator
and long dead-times in the control. Additionally, featuressuch
as joint angles, velocities, and accelerations were directly
available for the learning algorithm, which is not the case for
our system.

We briefly introduce the individual methods that our ap-
proach builds on, as well as the learning task in Sect. II.
After reviewing basic GPR, we will present a modification
for fast online GPR in Sect. III. In Sect. IV, we explain how
the individual methods are combined in our approach, and how
they can be applied to both a simulated 6 DOF redundant arm
with 12 artificial muscles, and to a 7 DOF robot arm driven
by 17 McKibben pneumatic artificial muscles. Results are
presented in Sect. V. Finally, in Sect. VI, we briefly summarize
and discuss our results, and give an outlook over possible
future directions of our work.

II. BASIC METHODS

A. Goal Babbling

Goal babbling is based on work by Rolf et al. [19], where
the comparison is made to infants who tend to make goal-
directed movements from at a very early age even if they do
not succeed. Accordingly only a smaller relevant subspace of
possible motor commands is explored, as opposed to random
motor babbling. By directly learning from the perturbed goal
directed movements, this bootstraps and increases the speed
of learning.

In [19], the inverse kinematics is learned in 2D space by
online construction of local linear regressions over positions
that are weighted by prototype vectors. A similar local weight-
ing is discussed in more detail in Sect. IV. Goal babbling is
responsible for generating the training samples: At every step,
the inverse kinematics for a point between the last goal and
the next goal is computed according to the current weight
matrix and then perturbed to facilitate exploration. Stability in
learning is ensured by always returning to a “home posture”
for which the inverse kinematics are known. Continuing the
comparison to infants, this corresponds to the child relaxing
its muscles and resting.

In order to transfer these ideas to inverse dynamics learning,
a new state vector has to be generated that captures the
dynamics of the robot arm. This is done using an echo state
network as described below.

B. Echo State Networks

ESNs [9] have been introduced as an alternative to more
traditional recurrent neural network (RNN) approaches. Two
major differences that enable ESNs to overcome problems
of some earlier algorithms for RNN training, such as slow
convergence and instabilities, are:

• to initialize the network weights with random values and
only adapt the weights from the hidden layer to the output
units (output orreadout weights);

• to scale hidden layer weights so that the network has the
echo state property, i.e., it implements a fading memory
of past inputs (see [9] for more details).

A random input-matrixWin combines input valuesu linearly
and sends them to the units in the high-dimensional hidden
layer, also referred to as thereservoir. The units in the
reservoir also have recurrent connections amongst each other,
collected in the matrixWres. Through these loops, informa-
tion can remain in the system for some time. In this context,
the metaphor of a reservoir is often used since the hidden
layer can be seen as a water reservoir that gets disturbed by
a drop, but slowly returns to its initial state after the ripples
from the input have decayed. This reservoir stater is mapped
at timestept + 1 by an activation functionf() such as a
hyperbolic tangent or a Fermi function, in the following way:

rt+1 = f(Wres ∗ rt +Win ∗ ut+1) (1)

This mapping has several consequences. First, it projects
the input in a high-dimensional space so that regression gets
easier as it is the case for several kernel methods. Second,
the repeated mapping by the activation function of neurons
in the reservoir leads to many nonlinearities that, together
with the fading memory, provide an implicit representationof
nonlinear input properties such as the velocity or acceleration
of a robot arm. Third, the input decays slowly. This way, ESNs
are a natural choice to represent delayed and nonlinear signals.
Usually, the output weights are trained with some form of
linear regression over the reservoir states. In our case, GPR is
used to train the readout instead.

C. Gaussian Process Regression

As Chatzis and Demiris [5] demonstrated, GPR is a more
powerful and robust tool for regression on ESNs than the linear
regression or ridge regression that has been employed so far.
Moreover, it seems to be a good choice for learning control
with echo state networks, because Nguyen-Tuong and Peters
[14] showed that this works very well with regular inverse
dynamics learning and that it can be adjusted to learn in real-
time.

The idea behind GPR is to perform a parameter-free regres-
sion over the the space of possible functions that gave rise to
the training data. In order to do so, a kernel function definesthe
correlations or – more intuitively – distances between training
points. When a test point is then evaluated, its function value
should be close to the function values of the training points
that covary most with the test point. The hyperparameters of
this kernel function represent aprior distribution over possible
functions. Conceptually, these hyperparameters correspond
to different activation functions and connections of neural
networks while parameters would be the actual connection
weights. When data points are added and correlations are
evaluated, thisprior is transformed to aposterior distribution
which can be used to predict new targets.



A Gaussian process is defined as a distribution over func-
tions f(x) with the constraint that any subset of evaluated
data points is always jointly Gaussian distributed. With a given
kernel functionk(x,x′) and the unproblematic assumption of
a zero mean, the distribution over functions can therefore be
written as

p(f) = N (f |0,C) (2)

with Ci,j = k(xi,xj) + δi,jσ whereσ stands for the noise
in the observed target values, andδ is the Kronecker delta.
Given this distribution, a prediction for a new test pointxN+1,
that is the mean function valuem(xN+1) given all previous
N targetst and the correlationsk between the previousN
training points and the new one, can be calculated as follows:

m(xN+1) = kTC−1

N t = kTα (3)

with α = C−1

N t as the later precomputed prediction vector.
We have to address two issues to learn with GPRs: A kernel

has to be selected and associated hyperparameters have to be
learned. We will use both the exponential kernel

k(x,x′) = θ exp

(
−0.5

D∑

i=1

ηi(xi − x′

i)
2

)
(4)

because it is known for its good predictions and robustness,
as well as the linear kernel

k(x,x′) = θxTx. (5)

It was shown in [5] that this kernel resembles ridge regression.
Using that, we can easily compare the performance difference
between GPR and ridge regression. The hyperparametersσ, θ
and ηi are optimized by applying conjugate gradient descent
to the log-likelihood of the data fit given the hyperparameters.
The best way to think ofηi is to see it as a relevance measure
for the ith dimension in the input data since if it is high, the
corresponding dataxi has a high influence on the covariance,
while if it is low the covariance is not affected. Whileηi scales
the resulting functions horizontally,θ can be seen as a vertical
scale representing the standard deviation of the GP.

The runtime cost for making a prediction is dominated by
the inversion of the covariance matrixC which isO(N3). Ob-
viously, this is not practical for online learning if a reasonable
amount of data points is assumed. We propose a faster method
to approach this problem.

III. O NLINE GAUSSIAN PROCESSES

To deal with the expensive matrix inversion at every step,
Nguyen-Tuong and Peters [14] suggested to use many small
local GPRs to keepN reasonably small and to linearly
combine the predictions of the closest GPs. This approach
reduces the runtime significantly, but it still grows cubic.In
[15], the same authors further reduce the runtime toO(N2)
using a Cholesky factorization. We achieve a similar speedup
with our GPR modifications, presented below, using block-
inversions.

We take advantage of the incremental manner of online
learning by exploiting the fact that a single data point is added
to one covariance matrix at every step. For a matrix with sub-
blocksA,B,D, andE, the block inversion formula states:
[
A B

D E

]
−1

=

[
A−1 +A−1BS−1DA−1 −A−1BS−1

−S−1DA−1 S−1

]
,

(6)

where S is the Schur complement ofA, i.e., S = (E −
DA−1B). In the case of an incrementally growing covari-
ance matrixC, it holds thatA = C, B = k(xn,xN+1),
D = k(xN+1,xn)

T ∀n ≤ N andE = k(xN+1,xN+1) + σ.
BecauseA−1 = C−1 was already computed in the previous
step and the Schur complementS is a single number, no
matrix inversion is left and the runtime reduces toO(N2)
for the matrix multiplications in every step. In order to make
use of this incremental inversion, the hyperparameters have to
be optimized beforehand and therefore represent a trueprior.

IV. T HE COMBINED MODEL

The combination of the methods described above is ex-
plained in the following paragraphs. Actual parameter settings
can be found in Table I.

In order to formally describe the algorithm implementing
the combined model, we define useful terms for online Gaus-
sian processes with a fixed delay ofdelay timesteps:

• Gt is the set of all local GPs at time pointt.
• cgt = 〈Dg

t 〉 is defined as the center ofgt ∈ Gt.
• closeness(x, gt) is adapted from [14] ask(x, cgt ) which

takes a high value for small distances.
• Dg

t = {xi|(delay< i < t)∧
(∀h ∈ Gi : closeness(xi, gi) ≥ closeness(xi, hi))} is the
set of all data points belonging to a local GP.

• T g
t = {yi|(0 < i < t − delay) ∧ (xi+delay ∈ gi+delay)} is

the set of all target points belonging to a local GP. This
is used ast in formula 3.

The general flow of information goes as follows: The sensor
information (length or pressure) from a set of muscles is used
to update an ESN everyesntime milliseconds. Parallel to
this, a growing group of local GPs,G, is used to map the
reservoir stater of the ESN and information about the current
and desired position of the arm to commands (Hill-parameters
or pressures) for muscle activation.

A. Predicting and Learning

The following paragraphs are a detailed description of the
algorithms for predicting and learning for one muscle (Algo-
rithms 1 and 2, respectively). Information flow in these is also
visualized in Fig. 1.

The input to the system is provided by the current reservoir
statert and by the positionpost of the robot arm end-effector.
Depending on this position a random new goal pointgoalt is
selected from a larger version of the later trajectory if either the
distance between the goal and the current position is smaller
than a threshold (the reaching movement was successful), or
if goalt−1 is older than 20 steps.



Fig. 1. The flow of information in the combined model. Dotted red arrows correspond to information flow during action selectionwhereas dashed blue
arrows are only relevant for training the GPs. The subdevided rectangles present in the upper half of the figure are memory-queues that save informations
between timet and t− delay. The GPR-box subsumes the set of targets, the matrix inversion and the prediction of the mean.

Next, a state vector is generated by concatenating the
reservoir statert with the differencedpred

t = goalt − post
to the statexpred

t . To predict the next actionyt, the covariance
betweenxpred

t and the observed statesDt of the closest numpred

GP is then computed and used in formula 3 to determine the
prediction of each local GPR for the muscle. Our closeness
measure is defined at the beginning of this section. These
local approximations are weighted by the closeness of each
GP to x

pred
t . The final predictionyt is then perturbed by

uniform noise to resemble the exploration in goal babbling.
In our experiments we found that the properties of noise
highly determine the final outcome. Smoother trajectories were
obtained by applying the same noise for several steps and to
only a subset of the muscles at the same time.

After sending the action, the actual learning (Alg. 2) takes
place. As in the prediction phase,xlearn

t is gained by combining
a reservoir state with a position difference. However, for learn-
ing rt−delay anddlearn

t = post − post−delay are concatenated.
The pair(xlearn

t , yt−delay) is then used as an observation-target
pair for training the closest GPR if the closeness is larger
than mincloseness. By doing so, the position difference after
delay steps is associated to the action and reservoir state at
that time. When a new action is predicted, the desired effects
should therefore be visible afterdelay steps. We are using the
position difference instead of direct position information since
this makes the algorithm a little more independent from the
arm it is applied to. If the closest GPR is further away than
mincloseness, a new local GPR is added and used for learning
this state-action pair.

After training, the algorithm waits until the rest ofsteptime
milliseconds has passed and starts again with new information.

B. Learning Stages

The actual learning is subdivided into three stages:

Algorithm 1 Predicting in the combined model for a single
muscle at stept. Symbols explained at the end of Sect. III. In
case of trajectory tracking, a new goal is selected each step.
Input : rt,post
if (goalt−1 == goalt−20)||(‖goalt−1 − post‖ ≤ const)
then
goalt ← goal set[rand()]

else
goalt ← goalt−1

x
pred
t ← [rt,goalt − post]

cls← Array(|Gt|), cls index← Array(|Gt|)
for i = 1→ |Gt| do
cls[i]← closeness(xpred

i , Gt[i]), cls index[i] = i
sort cls index according tocls in descending order
pred← Array(numpred),denom= 0
for i = 1→ numpred do
j ← cls index(i)
g ← Gt[j]
covar← covariances betweenDg

t andxpred
t

pred[i]← covarT ∗ α (formula 3)
pred[i]← pred[i] ∗ cls[j],denom← denom+ cls[j]

yt = sum(pred)/denom+ noise
Send : yt

1) Hyperparameter optimization
2) Goal-directed learning
3) Trajectory tracking

Before both the hyperparameter optimization and the learn-
ing, a short phase of random activation is performed to “warm
up” the echo state network.

The first stage makes use of random muscle activation to
mimic the later activations and thereby explore sensorimo-



Algorithm 2 Learning in the combined model for a single
muscle at stept. Symbols explained at the end of Sect. III.
Input :rt,post
xlearn
t ← [rt−delay,post − post−delay]

for i = 1→ |Gt| do
cls[i]← closeness(xlearn

i , Gt[i])
(cls max,max index)← max(cls)
if cls max> max closenessthen

g ← Gt[max index]
covar← covariances betweenDg

t andxlearn
t

covar self← k(xlearn
t ,xlearn

t ) + σ
resize covariance matrixCg

t to |Cg
t |+ 1

add covarself andcovar to C
g
t

update(Cg
t )

−1 with formula 6 usingB,D = covar and
E = covar self
α← (Cg

t )
−1 ∗ T g

t (3)
else
g ← new GP with C

g
t = k(xlearn

t ,xlearn
t ) + δi,jσ

Add yt−delay to T g
t+1 andxlearn

t to Dg
t+1

Return : g

tor contingencies. A number ofoptobs training samples are
recorded and then used to optimize the hyperparameters for
the kernel of the GPR. This process is also called automatic
relevance determination (ARD) [17].

In the learning phase, the algorithm explained above is
used to learn actions in the relevant subspace for the later
tracking. Also, every500 steps the muscle activations are set
to 0 for several steps to reach a “home posture” and stabilize
the learning process as described in Sect. II-A.

For this architecture, the tracking of a trajectory reduces
to changing the goal to reach at every step to the next goal
on the trajectory. The speed can be adjusted by increasing
or decreasing the distance between two succeeding goals.
Because of the fixed and identicalsteptime in learning and
tracking, the muscle activation will then be adjusted to reach
the required goal faster or slower.

C. Notes

To limit complexity and thereby decrease the runtime, we
set the maximal size of one GPR tomaxgprobs observations.
In the case that the closest GPR has reachedmaxgprobs, the
information of a previous observation in the inverse covariance
matrix C−1 can be substituted with the new one according to
the Sherman-Morrison formula inO(N2). In our trials with
steptime = 60 ms, this substitution is feasible up to a matrix
size of 1100 rows while the blockwise matrix inversion needs
the same time for 1500 rows. Therefore this method is only
used ifmaxgprobs is small enough.

Because the standard deviation between the optimized hy-
perparameters for each muscle in the simulation and on the real
arm is about ten times smaller than the standard deviation in
the hyperparameters itself, the same hyperparameters are used
for all muscles. This leads to identical covariance matrices C

Parameter Sim1 Sim2 Real Comments
learn steps 16000 30000 20000 ≈ max gprs∗ gpr obsa

step time 60 60 100 60 ms→ 1500
obs

GPR
b

esn time 30 30 50 should be step time/2
esn units 200 180 200 improvement stops at 200
gpr obs 800 1500 1100 improves fit
opt obs 800 600 400 many→ var, few→ bias
max gprs 5 25 10 maximal number of GPs
numpred 3 3 3 many→ bias, few→ var
delay 1 2 6 multiply with step time
min close. 0.7 0.3 0.35 inserts new GP
spect. rad. 0.7 0.6 0.7 ESN memory measure

aSim1, Real: substituting observations possible in second half
bon a Thinkpad x220t (2.7Ghz, 4GB memroy)

TABLE I
PARAMETER VALUES USED FOR THE SHOWN TRAJECTORIES.

and cuts the runtime by the number of muscles, because at
every step only one covariance matrix has to be inverted.

Also, please note that the position vectors of the simulated
arms only consist of the 3D-position of a marker on the
“hand”. No metainformation such as positions, velocities or
accelerations of joints are given, since information aboutthese
are encoded in the memory of the ESN reservoir. In fact,
correlation analysis shows that although no joint information
is given to the ESN, in every simulation there are always
reservoir units that are correlated with the joint angles with
ρ ≈ 0.9, with the joint velocities withρ ≈ 0.3 and with the
joint accelarations withρ ≈ 0.2. This enables us to use these
features for learning on the real arm, even though it does not
have any joint sensors.

V. RESULTS

The described model has been successfully applied to end-
point effector tracking on simulated 2 and 6 DOF robot arms
with artificial muscles as well as a real musculoskeletal arm
with 7 degrees of freedom. The parameters used for the
trajectories (shown in Fig. 3) can be found in Table I. The
source code for the developed model and for the simulation
will be made available on: www.christophartmann.de

A. Simulated Arm

The simulation has two main purposes: First, it should give
a proof of concept that the developed model is providing
reasonable results. Second, it can be used to investigate the
influence of the different methods employed by running many
different trials without wearing off the real robot arm.

The arm used for the proof of concept is quite simple. It is
made of two solid capped cylinders connected by a universal
2 DOF joint. These segments are connected by four muscles
spaced90◦ apart around the cylinders. They are individually
controlled by setting a parameterx, which is then mapped to
a force by the following nonlinear modified Hill-equation.

force(x) = (
750

x+ 1
− 375) ∗muscle length (7)

The force is applied at both fixpoints of a muscle in the
direction towards the opposing point. The position information



Fig. 2. Left: The simulated robot reaching for the goal visualized as a grey
ball. Muscles are drawn in white and the center of the red point provides
position information. Right: The musculoskeletal arm with a red glove for
position tracking.
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Fig. 3. 10 successive sample trajectories for the simple (top)and complex
(bottom) simulated arm. In each case, a completed trajectory takes 9 s.
Parameters are shown in Table I for “Sim1” and “Sim2”. The respective
RMSEs are 0.15 and 0.3.
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needed for the model comes from the position of the red
marker at the end of the arm. The length of each muscle serves
as sensory information for the model. Results for tracking an
ellipsoid are shown in Fig. 3. Since this shows that the tracking
error is only small and that the model works, a next step is to
apply the model to more difficult and redundant problems.

The arm used to explore the relative influence of the
different methods is based, as depicted in Fig. 2, on the first
arm but has two more universal joints resulting in a highly
redundant arm with 12 muscles. The influence of each method
as well as remaining parameters such as the hyperparameters
for the ESN, the kind of initial random exploration or the
maximal size of individual GPRs were explored by grid-
search. This led to the results in Fig. 4 for trajectories of 10
independently trained models for each condition.

These observations demonstrate that the novel combination
of methods used in this project is indeed better than the
previous approaches that made use of only one of the methods.

B. Real Arm

The musculoskeletal robot arm used for our experiments
has a 7 DOF skeletal structure, comparable to a human arm in
both the number of DOF, as well as the configuration of bones
and each joint’s DOF: shoulder, elbow, forearm, and wrist are
realized by using a 3 DOF, 1 DOF, 1 DOF and 2 DOF joint,
respectively. In order to move this structure, 17 PAMs are
used and configured schematically similar to a human’s arm.
As a consequence, there are also PAMs which drive multiple
joints at the same time. Each PAM has a pressure sensor and a
tension sensor and is controlled by pressure feedback control.
Two cameras are mounted on the head of the robot arm to
measure the position of the end effector.

The kinematics of this arm (and similar ones) is difficult
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Fig. 5. The x and y coordinates of a sample trajectory trackingon the real
arm when tracking 10 repetitions of a figure 8 using the parameters given in
Table I. One figure consists of 150 goal points and therefore takes 15 s to
complete.

for several reasons: When using PAMs, multiple actuators are
needed for one joint because PAMs are only capable of pulling.
Therefore, the motor command space, such as the pressures
of the PAMs, has to be redundant with respect to the joint
angular space. In addition to this redundancy, there is alsothe
well-known redundancy between the position space of the end
effector and the joint angular space.

One of the properties of PAMs is their high level of
backdriveability – in contrast to many traditional driving
systems using electrical motors and decelerators (as found,
e.g., in ASIMO and other robots). This also means, however,
that pressure control of individual PAMs influence each other
through the dynamics of the body structure. Expressing a
continuous motion by snapshots of postures has to take into
account the dynamics of these systems. In other words, in
order to realize trajectory tracking in a PAM-driven arm,
inverse dynamics learning is necessary but has to face several
challenges.

Due to the fact that the vision system of the arm can
currently only detect the 2D position of the red glove of the

robot (see also Fig. 2), the tracking is performed in only two
dimensions. Figure 5 shows the tracking performance of the
algorithm on the musculoskeletal arm using a real-time Linux
system to ensure proper synchronization. As can be seen, the
tracking performance for the first coordinate matches well
while the performance on the second dimension is more noisy.
Given the fact that the algorithm worked on the simulated
arms, we believe that the main reason for this noise lies
in the structure of the arm in combination with the random
exploration: The freedom of the arm in the y-direction is very
limited and it requires quite some effort to maintain a partic-
ular pose. Additionally, because of the random explorationin
the algorithm, we were only able to use moderate pressures
in the muscles. Therefore, this dimension was rarely explored.
This might have led to the noisy performance. Another point
to make is that the delay of the muscles is quite variable
since the pressure in the muscles builds up over time. For our
algorithm, a fixed delay time of 6 steps (=̂ 600ms) worked
well. However, this long and variable reaction time is surely
one reason for the oscillating noise in the second dimension.
Unfortunately, the action feedback to the ESN reservoir was
not able to compensate this issue. Since the tracking of the
first dimension barely shows oscillations, this effect might not
be as large as one would initially assume. Finally, the optimal
parameters for the real arm might differ from the parameters
optimized by grid-search for the simulated one. Exhaustively
grid-searching all parameters of the real arm is impossible.
Results of the trials we made can be found in Table I.

VI. CONCLUSION

We present a combination of methods that is capable of
learning inverse dynamics for end-effector trajectory tracking
of redundant robot arms with artificial muscles in real-time.
We show that, using our approach, this can be achieved
without any previous knowledge about the sensorimotor con-
tingencies and the structure of the musculoskeletal arm. We
also demonstrate that the incremental growth present in online
learning tasks can be taken advantage of to reduce the runtime
for GPR learning toO(N2) in a way that – to the best of our
knowledge – has not been suggested in previous work yet.

While the proposed model leads to good tracking results on
the simple 2 DOF arm with four muscles, the results gain more
variance as the number of joints and muscles increases. This
was to be expected for the challenging task of end-effector tra-
jectory tracking without any previous knowledge on a highly
redundant and nonlinear system. One of the contributions of
the paper is to show that the combination of techniques we
use is an improvement over using any of them individually. In
the previous section, the performance substantially decreased
when no ESN, no GPR, or only random exploration instead of
goal babbling was used. Without the ESN the system is lacking
memory and a nonlinearly expanded feature space; without the
goal babbling the search space would increase dramatically
since learning is not focused on the subspace relevant for the
trajectory tracking; and finally, the GPR facilitates the readout



to a level necessary to deal with the complex inverse dynamics
present in the robot models.

We plan to investigate causes of the tracking errors in more
detail in future studies. Our experiments point in the direction
that we are dealing with several problems. Regarding the real
arm, the activation delay is not the same for every muscle
and every state of the arm which conflicts with the fixed
delay assumed in our model. This could be approached by
learning state-specific delays, for example using a GP-based
technique. A possible reason for the error in the complex
simulation, which does not suffer from delays, may be found
in the dynamics that emerge from the interactions between the
different joints. These might require a more complex, maybe
hierarchical, ESN structure to represent the system state.This
will also be a point for future research. Additionally, the
uncertainty present in the predictions of a GP is not yet used
although they can be obtained fairly cheaply. This information
could be used to select which state-action pairs to learn and
thereby reduce the computational load on the GPRs.
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