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Abstract—A challenging topic in articulated robots is the systems being modeled, and/or address the the problem only
control of redundantly many degrees of freedom with artificial jn the context of static tasks like position control [3/ 21, 2
muscle_s. Actuation with these devices is difficult to solve beca_use Machine learning techniques have played an important role
of nonlinearities, delays and unknown parameters such as fric- . . . . .
tion. Machine learning methods can be used to learn control of In mod_eh_nq the complex dyngmlcs of a manipulator driven by
these systems, but are faced with the additional problem that the PAMs in [10,(8]. In these studies, feedforward neural neksor
size of the search space prohibits full exploration in reasonable were used to model the complex inverse dynamics of the ma-
time. We propose a novel method that is able to learn control of njpulator, and feedback error learning [11, 13] was employe
redundant robot arms with artificial muscles online from scratch to train the networks. However, as the structure of PAM-attiv

using only the position of the end effector, without using any joint bot t | ing its d ics in the f
positions, accelerations or an analytical model of the system or robaots gets more complex, expressing Its dynamics in or

the environment. To learn in real time, we use the so called online Of & static mapping is becoming difficult. Additionally, in
“goal babbling” method to effectively reduce the search spacea order to employ feedback error learning to realize trajgcto
recurrent neural network to represent the state of the robotarm,  tracking of an end effector, an initial feedback controller
and novel online Gaussian processes for regression. With our n45 o pe provided, requiring an inverse kinematics model
approach, we achieve good performance on trajectory tracking . h
tasks for the end effector of two very challenging systems: a in advance. Here, we aim for a model-free approach to the
simulated 6 DOF redundant arm with artificial muscles, and a 7 control problem. Other relevant methods for learning dyicam
DOF robot arm with McKibben pneumatic artificial muscles. We  of high-DOF systems in real time include for example “logall
also show that the combination of techniques we propose results weighted learning”/[20].
in significantly improved performance over using the individual In order to deal with the increasing difficulty of learningth
technigues alone. . . .
inverse dynamics of musculoskeletal robots driven by PAMs,

in this work, we combine a variant of goal babbling [19] with
an echo state network (ESN) [9], a particular kind of recuftrre

For articulated robots, pneumatic actuators have grown rieural network, to represent the state of the system. Gaussi
popularity and found increasing use in biorobotics, mddicgrocess regression (GPR) is used to train the network in real
industrial and aerospace applications [1]. Pneumatifi@aii time (see Sect§. 194, 1-B, and T[1C for more details on goal
muscles (PAMs), such as the McKibben artificial muscle [16habbling, ESNs, and GPR, respectively).
are favourable for developing biologically inspired rabsince ESNs [9] have recently become more prominent in the field
they are backdriveable, have high flexibility, and a high pew of robotics, e.q., for learning the inverse kinematics of an
to-weight ratio, similar to biological muscles. As a resultindustrial robot|[18]. However, to the best of our knowledge
PAMs have often been used to drive the structural pafSNs have not been successfully applied to musculoskeletal
of complex anthropomorphic musculoskeletal robots. On tmebots and inverse dynamics yet, despite their known gbilit
other hand, PAMs generally exhibit very strong nonlingaritto provide highly nonlinear mappings, and a fading memory
and their response is often delayed. For individual PAMs amd past inputs. We employ these features of ESNs to represent
single-DOF systems, there have been several proposals tfar state of a redundant robot arm with artificial muscles, an
analytical models [6, 12,/ 7]. When these are combined for udereby implicitly compute information such as velocity or
in a multi-DOF robot, it is, however, extremely hard to modedcceleration relevant for inverse dynamics tasks.
the dynamics analytically for accurate motion control. diatf Gaussian process_regression has been applied in previous
related studies, using well-established methods fromrobntwork in [4] as well as|[14, 15] to learn robust inverse dynasnic
theory, had to resort to limiting the number of DOF of then industrial robot arms. The latter authors succeeded to

I. INTRODUCTION



use GPR in a real-time setting, and demonstrated that this to initialize the network weights with random values and

method outperforms other state of the art learning methmds f  only adapt the weights from the hidden layer to the output

inverse dynamics. A notable difference of these approaches units (output oreadout weights);

to our work is that GPR was only used on industrial robot « to scale hidden layer weights so that the network has the

arms and did not have to face the challenges associated with echo state property, i.e., it implements a fading memory

musculoskeletal robots like elastic deformation of theiatzr of past inputs (see [9] for more details).

and long dead-times in the control. Additionally, featusesh A random input-matrixW;,, combines input values linearly

as joint angles, velocities, and accelerations were djrechnd sends them to the units in the high-dimensional hidden

available for the learning algorithm, which is not the case flayer, also referred to as theeservoir. The units in the

our system. reservoir also have recurrent connections amongst eae, oth
We briefly introduce the individual methods that our apeollected in the matriXW,..,. Through these loops, informa-

proach builds on, as well as the learning task in SEEt. tion can remain in the system for some time. In this context,

After reviewing basic GPR, we will present a modificationhe metaphor of a reservoir is often used since the hidden

for fast online GPR in Secf_llIl. In Sedt. 1V, we explain howayer can be seen as a water reservoir that gets disturbed by

the individual methods are combined in our approach, and hewdrop, but slowly returns to its initial state after the tgsp

they can be applied to both a simulated 6 DOF redundant affom the input have decayed. This reservoir siate mapped

with 12 artificial muscles, and to a 7 DOF robot arm driveat timestept + 1 by an activation functionf() such as a

by 17 McKibben pneumatic artificial muscles. Results atgyperbolic tangent or a Fermi function, in the following way

presented in Sedt]V. Finally, in Sect]VI, we briefly summari

and discuss our results, and give an outlook over possible Tip1 = f(Wres 10+ Win % up41) @)

future directions of our work. This mapping has several consequences. First, it projects
the input in a high-dimensional space so that regressiosn get
easier as it is the case for several kernel methods. Second,
A. Goal Babbling the repeated mapping by the activation function of neurons

Goal babbling is based on work by Rolf et 4l [19], wherdd the reservoir leads to many nonlinearities that, togethe

the comparison is made to infants who tend to make go:\j{Ylth _the fa_dmg memory, provide an implicit r_epresentgtuin
nonlinear input properties such as the velocity or accttera

directed movements _from at a very early age even if they %?a robot arm. Third, the input decays slowly. This way, ESNs

not succeed. Accordingly only a smaller relevant subspéce 0 . . .
. . are a natural choice to represent delayed and nonlineaalsign

possible motor commands is explored, as opposed to random ; i .

. . : sually, the output weights are trained with some form of
motor babbling. By directly learning from the perturbed lgo ; . .
X : . inear regression over the reservoir states. In our cas®, i6P
directed movements, this bootstraps and increases thel spee . .
of learning used to train the readout instead.

In [19], the inverse kinematics is learned in 2D space 9. Gaussian Process Regression

online construction of local linear regressions over pOS#  As Chatzis and Demiri<_[5] demonstrated, GPR is a more
that are weighted by prototype vectors. A similar local iig powerful and robust tool for regression on ESNs than thetine
ing is discussed in more detail in Sefct] IV. Goal babbling iggression or ridge regression that has been employed so far
responsible for generating the training samples: At evep,S Moreover, it seems to be a good choice for learning control
the inverse kin_ematics for a point t_)etween the last goal _awﬁh echo state networks, because Nguyen-Tuong and Peters
the next goal is computed according to the current weigfyl4] showed that this works very well with regular inverse
matrix and then perturbed to facilitate exploration. Stbin  gynamics leamning and that it can be adjusted to learn in real
learning is ensured by always returning to a *home posturgme.
for which the inverse kinematics are known. Continuing the The idea behind GPR is to perform a parameter-free regres-
comparison to infants, this corresponds to the child relaxi sion over the the space of possible functions that gave sise t
its muscles and resting. the training data. In order to do so, a kernel function defihes

In order to transfer these ideas to inverse dynamics leginiRorrelations or — more intuitively — distances betweemtrgj
a new state vector has to be generated that captures $hts. When a test point is then evaluated, its functionevalu
dynamics of the robot arm. This is done using an echo stafgould be close to the function values of the training points
network as described below. that covary most with the test point. The hyperparameters of

this kernel function representmior distribution over possible

B. Echo State Networks functions. Conceptually, these hyperparameters correspo

ESNs [9] have been introduced as an alternative to maie different activation functions and connections of néura
traditional recurrent neural network (RNN) approacheso Twnetworks while parameters would be the actual connection
major differences that enable ESNs to overcome problemeights. When data points are added and correlations are
of some earlier algorithms for RNN training, such as slowvaluated, thigrior is transformed to gosterior distribution
convergence and instabilities, are: which can be used to predict new targets.

II. BASIC METHODS



A Gaussian process is defined as a distribution over func-We take advantage of the incremental manner of online
tions f(x) with the constraint that any subset of evaluatel@arning by exploiting the fact that a single data point idext
data points is always jointly Gaussian distributed. Withveey to one covariance matrix at every step. For a matrix with sub-
kernel functionk(x,x’) and the unproblematic assumption oblocks A, B, D, andE, the block inversion formula states:

a zero mean, the distribution over functions can therefere b -
A B] b [Al +A'BS'DA™! —A-'BS!

written as {D E _g-1pA-! g1 ;
p(f) = N(f]0, C) ) (6)

with C;; = k(x;,%;) + &; jo whereo stands for the noise Where S is the Schur complement oA, ie., S = (E —
in the observed target values, afids the Kronecker delta. DA™ B). In the case of an incrementally growing covari-
Given this distribution, a prediction for a new test paint,;, 2ance matrixC, it holds thatA = C, B = k(xn,Xn+1),
that is the mean function value(xy_1) given all previous D = k(xy41,%n)" ¥n < N andE = k(xn41,Xn+1) + 0.
N targetst and the correlation& between the previoud’ BecauseA~! = C~! was already computed in the previous

training points and the new one, can be calculated as follow$eP and the Schur compleme8tis a single number, no
matrix inversion is left and the runtime reduces @gN?)

m(xnt1) = kT Cy't =k"a (3) for the matrix multiplications in every step. In order to reak
use of this incremental inversion, the hyperparameters kav

with a = C't as the later precomputed prediction vector. optimized beforehand and therefore represent aptioe.
We have to address two issues to learn with GPRs: A kernel

has to be selected and associated hyperparameters have to be IV. THE COMBINED MODEL
learned. We will use both the exponential kernel The combination of the methods described above is ex-
D plained in the following paragraphs. Actual parameterirsgst
k(x,x") = fexp <_0-5ZTH($¢ — g;;)2> (4) can be found in Tablg I.
P In order to formally describe the algorithm implementing
the combined model, we define useful terms for online Gaus-
Fan processes with a fixed delay adlay timesteps:

o G, is the set of all local GPs at time poitit

because it is known for its good predictions and robustne
as well as the linear kernel

k(x,x') = 0x"x. (5) . ¢/ = (D}) is defined as the center of € G,.
_ ) _ e closenesi, g;) is adapted from|[14] a%(x,c]) which
It was shown inl[5] that this kernel resembles ridge regoessi takes a high value for small distances.
Using that, we can easily compare the performance differenc DY = {x;|(delay< i < t)A
between GPR and ridge regression. The hyperparametérs (Vh € G, : closenesi;, g;) > closenesi;, b))} is the

andr; are optimized by applying conjugate gradient descent gat of all data points belonging to a local GP.

to the log-likelihood of the data fit given the hyperparamete T = {y;](0 < i < t — delay) A (X delay € Gi+delay)} IS
The best way to think ofy; is to see it as a relevance measure  ine set of all target points belonging to a local GP. This
for the i dimension in the input data since if it is high, the s used ag in formula[3.

cor.res_p.or_]ding data,; has' a high influence on the .Covariance, The general flow of information goes as follows: The sensor
while if it IS low thg covariance 1s not affected. Whvl;escalgs information (length or pressure) from a set of muscles isluse
the resulting functions horizontally,can be seen as avertlcalto update an ESN everysntime milliseconds. Parallel to

sc_la_lhe repre_sentmg t?e stankQard devu;t_lop of_thg G'_D' q bthis, a growing group of local GP<7, is used to map the
e runtime cost for making a prediction is dominate Beservoir state of the ESN and information about the current

i i i i i 3 - . .y .
the |n|veri|_0|j of the covgrlalr}ce m?.t'@\lNh'Ch 'SQf(N )9%? and desired position of the arm to commands (Hill-paranseter
viously, this is not practical for online learning if a reasble oré)ressures) for muscle activation.

amount of data points is assumed. We propose a faster metho
to approach this problem. A. Predicting and Learning

The following paragraphs are a detailed description of the
algorithms for predicting and learning for one muscle (Algo

To deal with the expensive matrix inversion at every stepthms[d and R, respectively). Information flow in these wsoal
Nguyen-Tuong and Peters |14] suggested to use many smadlualized in Fig[1L.
local GPRs to keepN reasonably small and to linearly The input to the system is provided by the current reservoir
combine the predictions of the closest GPs. This approastater; and by the positiopos, of the robot arm end-effector.
reduces the runtime significantly, but it still grows cublis. Depending on this position a random new goal pgaal, is
[15], the same authors further reduce the runtimedtav?) selected from a larger version of the later trajectory fi@itthe
using a Cholesky factorization. We achieve a similar sppeddistance between the goal and the current position is smalle
with our GPR modifications, presented below, using blockhan a threshold (the reaching movement was successful), or
inversions. if goal,_, is older than 20 steps.

IIl. ONLINE GAUSSIAN PROCESSES
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Fig. 1. The flow of information in the combined model. Dotted retbws correspond to information flow during action selectiminereas dashed blue
arrows are only relevant for training the GPs. The subdevigetangles present in the upper half of the figure are memaeeyes that save informations
between time andt¢ — delay. The GPR-box subsumes the set of targets, the matrixsiomeand the prediction of the mean.

Next, a state vector is generated by Concatenating tﬁ@Ofithm 1 Predicting in the combined model for a Single
reservoir stater, with the differenced”®® = goal, — pos, Muscle at step. Symbols explained at the end of Séctl IIl. In
to the statex(?'ed. To predict the next actiop;, the covariance case of trajectory tracking, a new goal is selected each step
betweenx} °“and the observed statés of the closest NURq Input : r;, pos,

GP is then computed and used in formila 3 to determine thef (goal, ; == goal, )||(||goal,_; — pos| < const)
prediction of each local GPR for the muscle. Our closenessthen

measure is defined at the beginning of this section. These goal, < goal_set[rand)]

local approximations are weighted by the closeness of eactelse

GP to xP™® The final predictiony, is then perturbed by goal, < goal,_,

uniform noise to resemble the exploration in goal babbling. x”®® + [r;, goal, — pos,]

In our experiments we found that the properties of noise cls < Array(|G,|), cls_index «+ Array(|G,|)

highly determine the final outcome. Smoother trajectoriessw  for i =1 — |G| do

obtained by applying the same noise for several steps and to cls[i] < closenes(:yfred, G4[i]), cls_index[i] =4

only a subset of the muscles at the same time. sortcls_index according tocls in descending order

After sending the action, the actual learning (Aly. 2) takes pred < Array(nunyeq), denom= 0
place. As in the prediction phasea™is gained by combining ~ for i = 1 — nuMeq do
a reservoir state with a position difference. However, &arrh- j + cls_index(7)
iNg r;_gelay and df?™ = pos, — pos,_geiay are concatenated. g < Glj]

The pair(z!®a™, Yi—delay) IS then used as an observation-target  covar < covariances betweeR{ andx
pair for training the closest GPR if the closeness is larger pred[i] «+ covar’ x o (formula[3)
than mincloseness. By doing so, the position difference after ~ pred[i] < pred[i]  cls[j], denom« denom+ cls|j]
delay steps is associated to the action and reservoir state ay: = sumpred)/denom+ noise

that time. When a new action is predicted, the desired effectsSend : y;

should therefore be visible aftedelay steps. We are using the
position difference instead of direct position informatigsince
this makes the algorithm a little more independent from the
arm it is applied to. If the closest GPR is further away than
mincloseness, a new local GPR is added and used for learning
this state-action pair.

After training, the algorithm waits until the rest gieptime Before both the hyperparameter optimization and the learn-
milliseconds has passed and starts again with new infoomatiing, a short phase of random activation is performed to “warm

) up” the echo state network.
B. Learning Stages The first stage makes use of random muscle activation to

The actual learning is subdivided into three stages: mimic the later activations and thereby explore sensorimo-

pred
t

1) Hyperparameter optimization
2) Goal-directed learning
3) Trajectory tracking



Algorithm 2 Learning in the combined model for a single Parameter| Siml__ Sim2__ Real | Comments
le at step. Symbols explained at the end of Sécfi] Il leam steps| 16000 30000 2000Q ~ maxgprsx gpr ob
musc p. Sy P * steptime | 60 60 100 | 60ms— 1500 23 B
Input :r;, pos, esntime 30 30 50 | should be steptimg2
learn _ esn units 200 180 200 | improvement stops at 200
XM — [y os os
il 1[ ¢ dgay’g t ~ POS; _qelay gprobs 800 1500 1100 improves fit
or - - | t‘ 0 | ) optobs 800 600 400 | many— var, few — bias
cls[i] + closenesx; 2™, G,[i]) max gprs 5 25 10 | maximal number of GPs
(cls_max max_index) < max(cls) NUMpred 3 3 3 | many— bias, few— var
if cl | ¢h delay 1 2 6 multiply with steptime
It cls_max > me}x_c osenesshen min close. 0.7 0.3 0.35 | inserts new GP
g + Gi[max_ indeX spect.rad.| 0.7 0.6 0.7 | ESN memory measure
covar « covariances betweeR? andx/ea™
covar self k(") + ¢ son  Thinkpad <2201 (510he 465 memrey)
resize covariance matri€y to |CY| + 1 P ez, Y.
add covarself andcovar to CY TABLE I

. . PARAMETER VALUES USED FOR THE SHOWN TRAJECTORIES
update(C{)~! with formulal® usingB, D = covar and

E = covar self
a+ (CH' 1Y @

else and cuts the runtime by the number of muscles, because at
g + new GP with Cf = k(xIam xleam) 4 5, .o every step only one covariance matrix has to be inverted.

Add y;_gelay to 77, ; andx®@Mto DY, Also, please note that the position vectors of the simulated

Return: g arms only consist of the 3D-position of a marker on the

“hand”. No metainformation such as positions, velocities o
accelerations of joints are given, since information altbase

tor contingencies. A number afptobs training samples are &€ encoded in the memory of the ESN reservoir. In fact,

recorded and then used to optimize the hyperparameters §8Felation analysis shows that although no joint infoiiorat

the kernel of the GPR. This process is also called automalfic9iven to the ESN, in every simulation there are always

relevance determination (ARD) [17]. reservoir units that are correlated with the joint anglethwi
In the leamning phase, the algorithm explained above s~ 0.9, with the joint velocities withp =~ 0.3 and with the

used to learn actions in the relevant subspace for the B t accelarations witlp ~ 0.2. This enables us to use these

tracking. Also, every500 steps the muscle activations are sdfatures for learning on the real arm, even though it does not
to 0 for several steps to reach a “home posture” and stabili?8V€ any joint Sensors.
the learning process as described in Sect]ll-A. V. RESULTS

For thi_s architecture, the tracking of a trajectory reduces The described model has been successfully applied to end-
to changing the goal to reach at every step to the next 9eaint effector tracking on simulated 2 and 6 DOF robot arms
on the trajectory. The speed can be adjusted by increasijgh artificial muscles as well as a real musculoskeletal arm
or decreasing the distance between two succeeding goglsh 7 degrees of freedom. The parameters used for the
Because of the fixed and identicsteptime in learning and yraiectories (shown in Fig3) can be found in TaBle I. The
tracking, the muscle activation will then be adjusted tocheaggrce code for the developed model and for the simulation

the required goal faster or slower. will be made available on: www.christophartmann.de
C. Notes A. Smulated Arm

To limit complexity and thereby decrease the runtime, we The simulation has two main purposes: First, |t_should. give
set the maximal size of one GPR faaxgprobs observations. a proof of concept that the.developed model s prgwdmg
In the case that the closest GPR has reachexprobs, the reasonable result's. Second, it can be used to mve;ugate th
information of a previous observation in the inverse caace mjluence qf the Q|ﬁerent me;thods employed by running many
matrix C~! can be substituted with the new one according t%|fferent rials without wearing off the rea! robqt arm. .
the Sherman-Morrison formula i®(N?). In our trials with The arm used' for the proof.of concept is quite S|mplg. Itis
steptime = 60 ms, this substitution is feasible up to a matri nade OT t.WO solid capped cylinders connected by a universal

: : . o : DOF joint. These segments are connected by four muscles
size of 1100 rows while the blockwise matrix inversion needs

the same time for 1500 rows. Therefore this method is on§paced90° apart around the cylinders. They are individually
used ifmaxgprobs is small eno.ugh. c)é)ntrolled by setting a parameter which is then mapped to

Because the standard deviation between the optimized A force by the following nonlinear modified Hill-equation.

perparameters for each muscle in the simulation and on &te re force(z) = (ﬂ — 375) x muscle_length @)
arm is about ten times smaller than the standard deviation in rz+1 -

the hyperparameters itself, the same hyperparametersade he force is applied at both fixpoints of a muscle in the
for all muscles. This leads to identical covariance ma#ri€e direction towards the opposing point. The position infotiora



Fig. 2. Left: The simulated robot reaching for the goal vised as a grey
ball. Muscles are drawn in white and the center of the red tppiovides
position information. Right: The musculoskeletal arm witheal glove for
position tracking.
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Fig. 3. 10 successive sample trajectories for the simple @op)complex
(bottom) simulated arm. In each case, a completed trajectorys t&ks.
Parameters are shown in Taljle | for “Sim1” and “Sim2”. The retpec
RMSEs are 0.15 and 0.3.
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Fig. 4. The effect of not using one part of the combined modelhenroot
mean squared error. The error bars represent the standai@hckvacross
10 independently trained models. All differences to the lagaonditions
have a significance> 0.99. The significance was computed with the two-
sided Welch’s t-test because the variance of the differampes cannot be
assumed to be identical.

needed for the model comes from the position of the red
marker at the end of the arm. The length of each muscle serves
as sensory information for the model. Results for tracking a
ellipsoid are shown in Fid.l 3. Since this shows that the irark
error is only small and that the model works, a next step is to
apply the model to more difficult and redundant problems.

The arm used to explore the relative influence of the
different methods is based, as depicted in Elg. 2, on the first
arm but has two more universal joints resulting in a highly
redundant arm with 12 muscles. The influence of each method
as well as remaining parameters such as the hyperparameters
for the ESN, the kind of initial random exploration or the
maximal size of individual GPRs were explored by grid-
search. This led to the results in Fig. 4 for trajectories @f 1
independently trained models for each condition.

These observations demonstrate that the novel combination
of methods used in this project is indeed better than the
previous approaches that made use of only one of the methods.

B. Real Arm

The musculoskeletal robot arm used for our experiments
has a 7 DOF skeletal structure, comparable to a human arm in
both the number of DOF, as well as the configuration of bones
and each joint's DOF: shoulder, elbow, forearm, and wrist ar
realized by using a 3 DOF, 1 DOF, 1 DOF and 2 DOF joint,
respectively. In order to move this structure, 17 PAMs are
used and configured schematically similar to a human’'s arm.
As a consequence, there are also PAMs which drive multiple
joints at the same time. Each PAM has a pressure sensor and a
tension sensor and is controlled by pressure feedbackatontr
Two cameras are mounted on the head of the robot arm to
measure the position of the end effector.

The kinematics of this arm (and similar ones) is difficult
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robot (see also Fid.] 2), the tracking is performed in only two
dimensions. Figurgl5 shows the tracking performance of the
q ‘\ 1 algorithm on the musculoskeletal arm using a real-time Xinu
“ I ‘ H ; \‘ system to ensure proper synchronization. As can be seen, the
ss |l M \ \‘ \\ u H “ “ 4‘ “ “‘ H ‘ “ ‘ ,,N “ “ - tracking performance for the first coordinate matches well
i I H‘ /| M \‘ while the performance on the second dimension is more noisy.
| || \ | \ )“ f h ] Given the fact that the algorithm worked on the simulated
‘ \‘ | ‘ ‘ 1 arms, we believe that the main reason for this noise lies
“\ “ I Ia “ | in the structure of the arm in combination with the random
1l H IRIR exploration: The freedom of the arm in the y-direction isyer
I Y w‘ | limited and it requires quite some effort to maintain a marti
h‘ ‘J | - ular pose. Additionally, because of the random exploration
“ the algorithm, we were only able to use moderate pressures
¥ 200 20 500 200 1000 1200 1400 1600 in the muscles. Therefore, this dimension was rarely e):e;ilor
e ‘ ‘ ‘ ‘ ‘ ‘ ‘ This might have led to the noisy performance. Another point
arm to make is that the delay of the muscles is quite variable
s )l since the pressure in the muscles builds up over time. For our
a2f J 1 algorithm, a fixed delay time of 6 steps: (600ms) worked
Wl | r '. | ’w‘ | well. However, this long and variable reaction time is syrel
‘n‘/\ M ‘ ! i | M \ one reason for the oscillating noise in the second dimension
) "‘1 ‘ | ' ﬂ‘ \V ] Unfortunately, the action feedback to the ESN reservoir was
RN
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not able to compensate this issue. Since the tracking of the
first dimension barely shows oscillations, this effect nigbt

be as large as one would initially assume. Finally, the optim

| }A‘ ¥ parameters for the real arm might differ from the parameters
\‘ 1 optimized by grid-search for the simulated one. Exhaulstive

| 1 grid-searching all parameters of the real arm is impossible

!
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Results of the trials we made can be found in Téble I.
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VI. CONCLUSION

Fig. 5. The x and y coordinates of a sample trajectory trackinghe real We present a combination of methods that is capable of
arm when tracking 10 repetitions of a figure 8 using the parersagiven in learning inverse dynamics for end-effector trajectorygkiag
Iﬁﬂg%gne figure consists of 150 goal points and therefakest 155 10 o4 ndant robot arms with artificial muscles in real-time
We show that, using our approach, this can be achieved
without any previous knowledge about the sensorimotor con-
for several reasons: When using PAMs, multiple actuators diegencies and the structure of the musculoskeletal arm. We
needed for one joint because PAMs are only capable of pullirgjso demonstrate that the incremental growth present inenl
Therefore, the motor command space, such as the pressigasning tasks can be taken advantage of to reduce the rintim
of the PAMSs, has to be redundant with respect to the joifer GPR learning taD(NN?) in a way that — to the best of our
angular space. In addition to this redundancy, there isthiso knowledge — has not been suggested in previous work yet.
well-known redundancy between the position space of the end/Nhile the proposed model leads to good tracking results on
effector and the joint angular space. the simple 2 DOF arm with four muscles, the results gain more
One of the properties of PAMs is their high level ofvariance as the number of joints and muscles increases. This
backdriveability — in contrast to many traditional drivingwas to be expected for the challenging task of end-effecter t
systems using electrical motors and decelerators (as foujettory tracking without any previous knowledge on a highly
e.g., in ASIMO and other robots). This also means, howeveedundant and nonlinear system. One of the contributions of
that pressure control of individual PAMs influence each pthéhe paper is to show that the combination of techniques we
through the dynamics of the body structure. Expressinguae is an improvement over using any of them individually. In
continuous motion by snapshots of postures has to take iti@ previous section, the performance substantially dsec
account the dynamics of these systems. In other words,vithen no ESN, no GPR, or only random exploration instead of
order to realize trajectory tracking in a PAM-driven armgoal babbling was used. Without the ESN the system is lacking
inverse dynamics learning is necessary but has to faceaeveremory and a nonlinearly expanded feature space; witheut th
challenges. goal babbling the search space would increase dramatically
Due to the fact that the vision system of the arm casince learning is not focused on the subspace relevant éor th
currently only detect the 2D position of the red glove of th&rajectory tracking; and finally, the GPR facilitates thadeut



to a level necessary to deal with the complex inverse dyramic
present in the robot models.

We plan to investigate causes of the tracking errors in morgs]
detail in future studies. Our experiments point in the dicet
that we are dealing with several problems. Regarding thie rea
arm, the activation delay is not the same for every muscl§9]
and every state of the arm which conflicts with the fixed
delay assumed in our model. This could be approached by
learning state-specific delays, for example using a GPebag&0]
technique. A possible reason for the error in the complex
simulation, which does not suffer from delays, may be found
in the dynamics that emerge from the interactions between th
different joints. These might require a more complex, maybe
hierarchical, ESN structure to represent the system skais.
will also be a point for future research. Additionally, thg11]
uncertainty present in the predictions of a GP is not yet used
although they can be obtained fairly cheaply. This infoiorat
could be used to select which state-action pairs to learn and

thereby reduce the computational load on the GPRs.
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