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Abstract—We present a new algorithm for task and motion
planning (TMP) and discuss the requirements and abstrac-
tions necessary to obtain robust solutions for TMP in general.
Our Iteratively Deepened Task and Motion Planning (IDTMP)
method is probabilistically-complete and offers improved per-
formance and generality compared to a similar, state-of-the-
art, probabilistically-complete planner. The key idea of IDTMP
is to leverage incremental constraint solving to efficiently add
and remove constraints on motion feasibility at the task level.
We validate IDTMP on a physical manipulator and evaluate
scalability on scenarios with many objects and long plans,
showing order-of-magnitude gains compared to the benchmark
planner and a four-times self-comparison speedup from our
extensions. Finally, in addition to describing a new method for
TMP and its implementation on a physical robot, we also put
forward requirements and abstractions for the development of
similar planners in the future.

I. INTRODUCTION

Robots in the physical world must couple high-level deci-
sions and geometric reasoning. The robot must plan over a
task-motion space, combining discrete decisions about objects
and actions with continuous decisions about collision-free
paths. Efficient algorithms exist to solve each of these parts
in isolation; however, integrating task and motion planning
(TMP) presents algorithmic challenges both in scalability and
completeness. Isolated task planning typically produces a sin-
gle plan, whereas TMP may require alternate task plans based
on motion level exploration. Isolated motion planning typically
assumes a fixed configuration space during planning, whereas
TMP may change the configuration space by moving objects.
A key challenge for TMP is that proving the nonexistence of
motion plans is difficult and unsolved for the general case
[35, 60]. We directly consider alternate task plans, changing
configuration spaces, and motion feasibility to introduce a new,
probabilistically complete TMP algorithm.

We present a probabilistically-complete algorithm for TMP
that offers improved performance and generality over the prior
work for probabilistically-complete TMP in manipulation. We
first discuss a set of reusable insights on TMP that underlie
our approach (see Sec. II and Sec. IV). Our TMP algorithm
extends constraint!-based task planning using the incremental
solution capabilities of Satisfiability Modulo Theories (SMT)
solvers to dynamically incorporate motion feasibility at the
task level (see Sec. V). We additionally analyze domain
assumptions on connectivity and algorithmic extensions that

L Constraint is an unfortunately overloaded term. Our usage of “constraint”
in this paper corresponds to the logical assertions of task planners based on
satisfiability checking.
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Fig. 1: Basic TMP Example. The robot must stack the blocks
on the tray in a particular order, then move the tray. Planning
must consider different actions to manipulate the different
kinds of objects (blocks and tray), determine the order of these
actions, and identify collision-free paths for the motion.

improve performance of our method while preserving prob-
abilistic completeness (see Sec. VI). Finally, we validate our
planner on a physical manipulator and show that it scales better
with the number of objects and length of plan compared to the
similar TMP method of [36] (see Sec. VII).

II. CHALLENGES AND REQUIREMENTS

TMP combines continuous motion decisions about paths
with discrete task decisions about objects and actions. The typ-
ical algorithms for independent task planning [37, 39, 43, 67]
and motion planning [44, 53] are fundamentally different.
Consequently, most TMP methods [9, 36, 69, 72] perform
task planning and motion planning as separate, possibly in-
terleaved, phases. We isolate and discuss the specific require-
ments for task planning, motion planning, and their interface
in order to perform efficient and robust TMP.



A. Task Planning Requirements

Task planning finds a discrete sequence of actions to tran-
sition from a given start state to a desired goal condition [27].

The key requirement for the task planning phase of TMP is
support for generating alternate plans. As we iterate between
task planning and motion planning phases, feedback from the
motion planner ideally influences the task planner to favor
operators with previously computed motion plans or disfavor
more difficult or potentially infeasible operators. The task
planning layer must therefore be able to compute alternate
plans for a domain and ideally reuse work from previous
planning rounds to improve performance.

Secondarily, the task planner must support a sufficiently
expressive specification format to model the desired domain.
Previous work applied a variety of notations to the mod-
eling of discrete robot tasks: temporal logics [3, 36, 47],
structured and natural language [46, 59], logical knowledge
bases [25, 75], the Planning Domain Definition Language
(PDDL) [30, 61, 72], and context-free grammars [14, 58, 79].
Each notation provides advantages for certain domains or
proprieties, e.g., safety properties are easily specified with
temporal logics, action effects with PDDL, and hierarchies
with grammars. Therefore, a general robotics task and motion
planner would ideally be independent of the particular domain
specification syntax, enabling the use of the most suitable
notation.

B. Motion Planning Requirements

Geometric motion planning finds a collision-free path from
a given start position to a desired goal [10].

Rearranging objects changes the the robot’s configuration
space, i.e., the valid joint positions. Moreover, some objects are
kinematically coupled (e.g., blocks on the tray in Fig. 1). Thus,
the motion planner must use underlying representations that
permit both efficient updates and model object interactions.

C. Task-Motion Interface Requirements

TMP combines the discrete action selection of task planning
with the continuous path generation of motion planning.

The primary requirement of the task-motion layer is to
establish a correspondence between task operators and motion
planning problems. Given the geometric scene, what is the
corresponding task description? Given a task action or plan,
what are the corresponding motion planning problems? The
task-motion interface must translate between the low-level
scene geometry and the high-level task descriptions.

A secondary requirement of the task-motion layer arises
when we wish to ensure some form of completeness in
planning. For the current state of the art in high-dimensional
motion planning, probabilistic completeness is the best we can
hope to achieve. A fundamental challenge for general, high-
dimensional systems is that we cannot prove the non-existence
of a motion plan [35, 60]. Consequently, we cannot definitively
rule out an attempted task action because a motion planner
was unable to find a concrete path in the allotted time; the
motion planner may have failed because such a path indeed
does not exist or merely because insufficient time was allotted

to motion planning. Thus, to ensure probabilistically complete
TMP, we must not eliminate failed task actions but instead set
them aside to be later reattempted.

III. RELATED WORK
A. Task Planning

Task planning is a well-established field, largely evolving
from the pioneering work on STRIPS [27]. The currently dom-
inant approaches for efficient task planning [76] are heuristic
search [37, 39, 78] and constraint-based methods [43, 67, 68].
Logic programming is also used [55, 75].

We adopt the constraint-based task planning approach to
leverage ongoing advances in solvers for Satisfiability Modulo
Theories (SMT) [2, 16]. Typical constraint-based planners
use boolean satisfiability formulas [43, 67]. SMT extends
boolean satisfiability with rules (theories) for domains such as
linear arithmetic. Compared to traditional SAT solvers, SMT
solvers provide a more expressive and high-level interface with
useful features for expressing constraints in robotics domains
[62, 80]. Crucially, some SMT solvers [1, 15] enable incre-
mental solving — adding and deleting constraints at run-time to
produce alternate solutions. Our approach applies incremental
solving to update constraints about motion feasibility.

B. Motion Planning

The major approaches for high-dimensional motion plan-
ning are heuristic search [32] and sampling-based [44, 53]
methods. Heuristic search planners are sometimes used for
manipulation [11], but it is challenging to find general
heuristics that work for different manipulators. In contrast,
sampling-based planners efficiently handle high degree-of-
freedom (DOF) systems without robot-specific modifications,
typically through constructing either multi-query roadmaps
[44] or single-query trees [53]. However, sampling-based plan-
ners can offer only probabilistic completeness. Consequently,
the failure of a sampling-based planner to find a plan does
not prove such a plan does not exist. This challenge is a
fundamental consideration in the design of our algorithm.

In this work, we do not modify the operation of the motion
planner, but rather employ sampling-based planners from the
Open Motion Planning Library [13]. Specifically, we use
bidirectional Rapidly-exploring Random Trees (RRTs) [49].
However, our algorithm and its properties depend only on the
probabilistic completeness of the underlying motion planner,
so other choices for a motion planner are possible.

C. Task and Motion Planning

Most prior work on TMP focuses on performance over com-
pleteness or generality. [22] interleaves task and motion plan-
ning at the level of individual task actions, calling the motion
planner directly from the task planner for feasibility checks
using semantic attachments. [25] produces a knowledge base
for household robots in the logic programming paradigm
[56]. [51] applies geometric constraints to limit the motion
planning space or prove motion infeasibility in special cases.
Hierarchical Planning in the Now (HPN) [40, 41] interleaves
planning and execution, reducing search depth but requiring



reversible actions when backtracking. Several related methods
[17, 18, 19, 30] extend Hierarchical Task Networks (HTN)
[26] with geometric primitives, using shared literals to control
backtracking between the task and motion layer. [72] interfaces
off-the-shelf task planners with an optimization-based motion
planner [70] using a heuristic to remove potentially-interfering
objects. [57] formulates the motion side of TMP as a constraint
satisfaction problem over a discretized, preprocessed subset
of the configuration space. [62, 80] use an SMT solver
to generate task and motion plans from a static roadmap,
employing plan outlines to guide the planning process in a
manner similar to Hierarchical Task Networks [26]. FFRob
[29] develops an FF-like [39] task-layer heuristic based on
a lazily-expanded roadmap. Overall, these methods set aside
the general challenge of ensuring probabilistic completeness
of the overall approach. In contrast, we directly address the
the challenge of probabilistically complete TMP.

Other works perform task and motion planning for dif-
ferential or hybrid systems using sampling-based planners
[42, 64, 65]. Differential dynamics, though necessary for some
domains, poses challenges for completeness even in isolated
motion planning [50]. In contrast, we consider purely geomet-
ric motion which is adequate for many manipulation tasks and
for which there exist many probabilistically-complete motion
planners [52, 13].

A smaller number of other task and motion planners
also achieve probabilistic completeness. The aSyMov planner
[8, 9, 31] combines a heuristic-search task planner based on
metric-FF [38] with lazily-expanded roadmaps. Our proposed
algorithm operates differently at all levels, yielding different
performance characteristics from aSyMov. For example, aSy-
Mov’s composed roadmaps could be amortized over multiple
runs but composing roadmaps for object interactions may be
expensive, as acknowledged by the authors in [9]. In contrast,
we motion plan anew each run, but efficiently update scene
data structures to handle object interaction. The Synergistic
Framework [65] and related methods [4, 5, 36] are similar
to our proposed approach, but there are important differences
in the underlying algorithms that suggest these methods may
be complementary. The Synergistic Framework finds task
plans through forward search, while we use constraint-based
methods to efficiently generate task plans. There is also a
distinction in the feedback between task and motion planners.
Our approach incorporates geometric information from failed
motion planning attempts via incremental constraint updates,
while the Synergistic Framework uses feedback between the
task and motion planner to guide a weighted forward-search
which may assist difficult motion planning domains. [36]
also focuses on the manipulation domain; in comparison, our
method provides both more flexible abstractions than [36]’s
domain-specific task-state graph and significant performance
improvements for the benchmarks in Sec. VII. Thus, we
present our new approach as a complementary alternative to
prior work on probabilistically complete TMP.

Several related methods consider motion planning with
movable objects. We view such works as special cases of

TMP with restricted task actions. Navigation among movable
obstacles (NAMO) [21, 54, 73, 74, 77], Minimum Constraint
Removal/Displacement (MCR/MCD) ([34, 35] find motion
plans in the presence of movable obstacles. Rearrangement
Planning bases the goal not on the robot’s position but rather
on positions of the objects to be moved [48]. In contrast to
NAMO, MCR, MCD, and Rearrangement Planning, general
TMP considers multiple, arbitrary task actions.

IV. TASK-MOTION ABSTRACTIONS AND DEFINITION

We now formalize the abstractions for our approach to TMP.
To formally define the TMP problem, we first separately define
the task domain (see Def. 1) and motion domain (see Def. 3),
then combine them in the task and motion domain (see Def. 5).

A. Task Domain

Task domains are typically defined in terms of states and
actions using a variety of notations [25, 36, 72]. To support
various notations, we define the notation-independent task
domain as the following formal language:

Definition 1 (Task Language): The task language is a set of
strings of actions, defined by £ = (73, A&, s0 g), where,

e P is the state space ranging over variables po, ..., pn,

o A is the set of task operators, i.e., terminal symbols,

o £ C (P(P) x AxP(P)) is the set of symbolic transi-
tions. Each e; € £ denotes transitions pre(a;) — eff(a;),
where pre(a;) C P is the precondition set, a; € A
is the operator, and eff(a;) C P is the effect set. We
represent a concrete transition on a; at step k from state
stk to slFH1] as skl = q,(s*), where sl¥l € pre(a;),
stk +1] ¢ eff (a;), and for all state variables p; independent
of (i.e., free in) eff(a;), p;F+1) = p; ¥,

o sl0 € P is the start state,

e G C P is the set of accept states, i.c., the task goal.

Definition 2 (Task Plan): A task plan A is a string in the
task language £, i.e., A € £, where A = (a[o],a[l], . alh),
afl e A, skl pre(a[k]), skt = gkl (s[k]), and sM € G.

Note that Def. 1 and Def. 2 are not a new task notation but
an abstraction for many existing notations, e.g., [23, 61].

B. Motion Domain

Robot manipulators are modeled as kinematic trees or scene
graphs of joints and links [33]; these structures underlie
popular software packages such as OpenRave [20], KDL [71],
Movelt! [12], Gazebo [45], and ROS [28, 81]. In contrast to
prior frameworks, TMP problems require (1) translation be-
tween the motion and task domains and (2) efficiently chang-
ing the kinematic topology of the scene graph as objects are
grasped, moved, and released. To support TMP requirements
for task-motion translation and efficient, dynamic updates,
we modify and streamline typical scene graph representations
such as [81] as follows:

Definition 3 (Scene Graph): v = (Q, L, F), where

e Q CR™is a space of configurations,

e L is a finite set of unique frame labels,

o F is a finite set of kinematic frames (graph nodes), such

that each frame f; = (¢, o¢, ¢, 14¢), where,



— ( € L is the unique label of frame of f,

— o¢ € L is the label of the parent of frame of f,
indicating graph edge connections

- < : Q— SE(3), maps from the configuration space
to the workspace pose of f, relative to its parent gy,
indicating graph edge values

— e is a rigid body mesh representing geometry at-
tached to fy.

The global or absolute SE(3) transform of any frame £ in the
scene graph is the product of relative transforms from root 0
to frame ¢: 9S; x ... %S, where %, is the transform in SE(3)
from parent a to child b and 255, = ¢(g). Typically, it is
not possible to explicitly represent the configuration space Q
of high DOF manipulators, so sampling-based planners use
specialized collision checkers [63] to determine whether a
given configuration is valid based on the absolute SE(3) poses
06, of all geometry fi.

Common TMP operations such as grasping an object change
the collision-free configuration space, which we represent
by changing the topology of the scene graph. For example,
grasping block-c in Fig. 1 changes its parent label from
its support object, i.e., block-a, to the gripper label. We
formalize such topological changes to the scene graph using
a general reparent operation. Reparenting changes the parent
label of frame ¢ to g, and computes the new relative pose 2,
that preserves 05, by 2:5, = (%)™ # (%se).

Definition 4 (Motion Plan): A motion plan is a sequence
of neighboring configurations Q = (¢!, ¢!, ... ¢ such
that each ¢!*) € Q and ||¢l+1) — ¢l1]| < ¢, for some small
€q- The initial configuration is first(Q) = ¢, and the final
configuration is last(Q) = ¢[™.

C. Task and Motion Domain

We define the domain ® for TMP problems using our task
language and scene graph. A key detail is the translation
between task and motion state. We abstract a scene graph
to a single task state where the task-state position s € P is
given by the parent o, of each object ¢ in the scene graph.
Task actions such as grasping or placing objects correspond
to a set of configurations due to multiple grasp positions or
redundancy of the manipulator. We refine the effect of a task
operator to a single scene graph and multiple configurations.
We define © as follows:

Definition 5 (Task-Motion Domain):

D = (£,0% X\, 2,,Q)
o £ is the task language, where P = P, x P, represents
the motion component P,, and non-motion component
P, of task state,

o ol% = (sl 410 ¢l) s initial the task-motion state: task

state sl scene graph 7[°! and configuration ¢l°,

e Ay : I' = P, abstracts the scene graph v € I" to the

motion component task state s,, € P,

e A, : I'x A+ P(Q) x T refines the initial scene graph
yf)’“] € T and task operator al*! € A to a motion planning
goal (a set of configurations) ©¥1 C Q for the action and
a final scene graph /*+1] € T' via reparenting frames,

/ Scene
candidate task plan

Graph \ \
~

Task TASK MOTION T./M.
Domain PLANNING PLANNING Plan
w—

no new
task plan

additional constraints
7

(deepened) TASK MOTION T./M.
search /| PLANNING PLANNING | Plan
no new L
task plan
(deepened)
search /

Fig. 2: Diagram of IDTMP. We incrementally incorporate
motion feasibility information into the task planner via in-
cremental constraint solving. The bound increases [43] of our
constraint-based task planner are coupled to timeout increases
for sampling-based motion planning.

e QCT x P is the goal condition.

Definition 6 (Task and Motion Plan): A task and motion
plan is a sequence of task operators and motion plans, T =
((a[o],Q[O]) e (a[h], Q[h])) where (am, cee a[h]) € £and
for each step k, (O yF+1) = X (al*],4*) such that
last (Q¥)) € O A first (QIF+1) = last (QIF).

V. IDTMP

We present a new algorithm for task and motion plan-
ning (TMP), Iteratively Deepened Task and Motion Planning
(IDTMP), Algorithm 1, that uses a constraint-based task
planner to generate candidate task plans (see line 9), then uses
a sampling based motion planner to check plan feasibility (see
line 17). Fig. 2 graphically depicts the operation. Constraint-
based planners encode the task planning problem over a
bounded step horizon as a logical formula and compute a
solution using a constraint solver, iteratively increasing the
step horizon (see line 14) [43] until a plan is found. Sampling-
based motion planners terminate either when a motion plan is
found or when a sampling horizon, or timeout, is exceeded
(see line 19). We couple a progressively increasing sampling
horizon of the motion planner to the increasing step horizon
of the task planner (see line 14). We use an SMT solver
for constraint-solving. Crucially, we use the SMT solver’s
constraint stack to efficiently generate alternate task plans over
the increasing step horizon, then if necessary later pop (see
line 12) the additional constraints (see line 21) to revisit task
plans with increased motion search horizons, ensuring that the
motion planner has sufficient time to identify feasible paths.

A. Task Planning Implementation

We develop a custom task planner by extending the
constraint-based planning method [43, 52, 66]. Typical task
planners are optimized for single-shot queries whereas for
TMP, it may be necessary to generate alternate task plans. Our



task planner efficiently generates alternate plans by leveraging
modern, incremental SMT solvers. Incremental SMT solvers
maintain a stack of constraints or assertions and can efficiently
perform repeated satisfiability checks as constraints are pushed
onto and popped from the constraint stack [1, 15]. Our use of
incremental SMT solving to update constraints is a new feature
compared to previous use of SMT solvers in TMP [62, 80].
1) Background on Constraint-Based Planning: Constraint-
based planners encode the planning domain as a logical
formula, then use a constraint solver — typically, a boolean
satisfiability solver — to find a satisfying variable assignment
for that formula, corresponding to the plan [52, p69]. The
formula contains variables for the task state and the action to
take for a fixed number of steps h. Given a domain with state
variables po,...,pmn and actions ao,...,a,, the set of for-
mula variables for h steps is {pi[k] |i€0...m,keo.. .h} U
{a;"|j €0...n,k €0...h}. The formula itself asserts the
transitions from Def. 1 and Def. 2. Specifically, the start state
holds a step O (see line 3) and goal condition holds at step
h (see line 5 and line 16), and states and actions obey the

Algorithm 1: IDTMP
Input: (£, X,,\,,Q) : Task-Motion Domain
Output: T: Task-Motion Plan
1 ([0 101 g0y < 0] /* Start State x/
2 (h,t) < (1,%0); /* Initial Horizons =/
/* ¢: formula for task domain x/
3 ¢ sl A )\Q(VO)[O] A (transitions of £ at step 0) ;

4 push(¢); /* Push scope */
s o dA M (UM AQRM ./« Goal at h x/
6 T « (; /+ T: Task-Motion Plan =/
7 while ) = T do

8 A« 0 /* A: Task Plan x/
9 while ) = A do /» Task Planning */
10 A < Incremental_SMT(¢);

1 if ) = A then

12 pop(d); /* Pop scope */
13 @ + ¢ A (transitions of £ at step h) ;

14 (h,t) < (h+1, t+ At);

15 push(¢); /* Push scope =/
16 b+ A Q@) AQRM 5 /5 Goal +/
17 foreach a/*! € A do /+ Motion Refine */
18 (O A1y o 2, (4 alfl); /% Goal */
19 Q" « motion_plan(y!*, ¢l¥1, @ ¢) ;

20 if ) = Q¥ then /« Motion Failed */
21 ¢ < ¢ A (New Constraints) ;

2 T « 0;

23 break;

24 else

25 gF 1 last(QF);

2% T « append(T, (al*, QI*));

27 return T

transitions £ as follows (see line 3 and line 13):

e A selected action implies its preconditions and effects
(i.e., the pre(a;) and eff(a;) in &): for every action a;
and step k, a;[F — pre(ai)[k] A eff(ai)[kﬂ}).

o State remains the same unless changed by an ac-
tion’s effect: for every state variable p;, and step k,

(pi[k] = pi[k"’l]) vV (aj[k] V...V ag[k]), where a;, ..., a;
are the actions that modify p;.

e Only one action is taken at a time: for
every action a; and step k, a;® =

(—\ao[k] VANAN —\ai_l[k] A _\ClH_l[k] VANAN ﬁan[k]).
The planner progressively increases step count h until the
formula is satisfiable, indicating a valid plan where the action
at each step k is given by which variables a;*! are true in the
satisfying assignment.

2) An Incremental Task Planner: We extend previous work
on constraint-based task planning by using an incremental
SMT solver for constraint satisfaction. In Algorithm 1, the
key, novel feature of our task planner compared to typical
constraint-based planners is the ability to efficiently add
(line 21) and remove (line 12) constraints based on motion
feasibility to generate and revisit alternate task plans (line 10).
The incremental SMT solver maintains constraints using a
stack of scopes, where each scope is a container for a set
of constraints. The planner pushes scopes onto the stack, adds
new constraints to the top scope on the stack, and later pops the
top scope from the stack thus removing the constraints within
that scope [2]. For our planner, the top scope holds constraints
for the current step horizon, e.g., the goal condition is true at
the end (see line 16).

B. Motion Planning Implementation

We use a sampling-based, single-query motion planner —
specifically RRT-Connect [49, 13] — to instantiate task ac-
tions. Using a probabilistically complete, single-query planner
backed by our scene graphs (see Def. 3) allows us to ensure
probabilistic completeness (see subsection V-D) over chang-
ing configuration spaces but at the cost of repeated motion
planning computation, which we partially address through
extensions in Sec. VI. Though roadmap based planners such
as [6, 7] offer the potential for efficient repeated queries, the
changing configuration spaces of TMP pose challenges for
their use.

For each step k (see line 17), we determine the goal based
on operator al*l and the current scene graph (¥ (see line 18),
then attempt to find a motion plan (see line 19). If the motion
planner cannot find a plan for a[¥! within the current sampling
horizon t (see line 20), we give additional constraints to the
task planner to select a different operator (see line 21).

C. Task-Motion Interaction

The task-motion interface connects the task layer and mo-
tion layer through domain-specific functions A, and A, (see
Def. 5). Abstraction function A, translates scene graphs to task
state (see line 3, line 5, and line 16). Refinement function
A, translates task operators to motion planning problems



(see line 18). For the specific domain in our experiments
(see Fig. 1), A, produces a task state indicating the object
placements, i.e., the parent frame label g, of blocks and trays,
and A, produces motion planning goals to transfer a block,
stack a block, or push a tray.

We use the incremental feature of SMT solvers to effi-
ciently generate alternate task plans which the motion planner
attempts to refine. If the motion planner fails to refine a
task plan, we add additional task constraints to produce the
alternate plan (line 21). In the simple case, we could constrain
the task planner to enumerate plans; a more efficient extension
is presented to subsection VI-B. To enumerate plans, the
additional constraint asserts that action variable assignments
a;*! be different from that of the previously generated plan:

h n
- A </\ (aim’ - ai[k])> (1)
k=0 \i=0
Then, the next satisfiability check (line 10) will produce a
different task plan A if one exists.

Since failure of the motion planner to refine operator a;
does not prove a; is impossible, we later reconsider a; with
a greater motion planning horizon. While retrying motion
planning duplicates computation, it is necessary for probabilis-
tic completeness; we mitigate the extra computation through
extensions in Sec. VI. We reconsider operators using the SMT
solver’s constraint stack. When our planner cannot find a
different task plan at the current step horizon, we (a) pop
the top constraint scope, removing the constraints it contains
(see line 12), (b) increment both task planning step horizon h
the motion planning sampling horizon t and (see line 14), and
finally (c) push a new scope for future constraints (see line 15).
Increasing the step horizon results in new task plans of longer
length, even if the same constraints are later re-added. Thus
we search for longer task plans through the incremented
step horizon, and we search longer for motion plans through
the incremented sampling horizon, notably reconsidering the
previously failed task operators.

D. Completeness

We now prove the completeness properties of our basic
algorithm.

Theorem 1: Naive IDTMP is probabilistically complete.

Proof Outline: The constraint-based task planner is com-

plete [43], so it enumerates all task plans as we increment
the step horizon. The bidirectional RRT motion planner is
probabilistically complete [49], so given sufficient time, the
probablility of finding a plan, if one exists, approaches one.
For each increment of task-planning step count, we revisit
all previous task plans of lower count and attempt motion
refinement with greater planning time. Because we iteratively
increase the motion planning time for all potential task plans,
the probability of successfully refining a valid task plan, if one
exists, approaches one as time increases. [

VI. COMPLETENESS-PRESERVING EXTENSIONS

We now extend the initial IDTMP presented in Sec. V to im-
prove performance while maintaining probabilistic complete-

ness for typical cases. We formally define a basic assumption
on connectivity of the configuration space for our extensions
to preserve probabilistic completeness.

A. Basic Connectivity Assumption

In the general case, different plans to move an object may
create disconnected configuration-space regions, such as in
Fig. 3. Naive IDTMP handles this possibility by retrying
motion planning operations — both those that previously failed
and previously succeeded. Failed operations must be retried
because in general we are unable to prove the nonexistence of
motion plans. Successful operations must also be retried to en-
sure exploration of different, disconnected final configurations.
However, by focusing on typical manipulation environments
where final configurations are connected, we can extend our
algorithm to improve performance. We define a connectedness
assumption to extend IDTMP as follows:

Definition 7 (Connected Configuration Set): A configura-
tion set © is connected if there is a motion plan between
all configurations in O:

C(O) £ (Vgi,q; € O, (3Q, first(Q) = ¢; Alast(Q) = ¢;))
Now we define postcondition configuration sets for plans and
task states. The connectedness of these configuration sets
enables our extensions to preserve probabilistic completeness.

Definition 8 (Plan Post-Configuration): The plan post-
configuration £ 4o maps from task plan A € £ to the set of
valid final configurations © C Q for that task plan,

5,49 L= IP’(Q)

The post-configuration of a task operator to place an object
is constrained by possible configurations that place the object
in the desired destination. We can approximate the post-
configuration by sampling valid placement configurations.
Thus, plan post-configurations are determined by the final
operator rather than the entire plan.

Definition 9 (State Post-Configuration): The state post-
configuration &g maps from an initial state ol ePxQ
and a final task state s(”! € P to the set of valid final

configurations © C Q for the plans that reach st from o[,

Eg:Px QA xP—POQ).

The state post-configuration &yg is the union of plan post-
configurations £4¢ for plans satisfying the initial and final

7277777
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Fig. 3: Example object placements that cause disconnected
post-configurations by “blocking-in” the robot. For this 3-DOF
planar robot, the two sides of the workspace are disconnected.
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condition of &yg:
Eoo (ol sty =
{a€caa(a) |0 = pre(a) s = eff(A)} @

Based on our connectivity assumption for these sets, we
extend our algorithm and maintain probabilistic completeness.

B. Incremental Constraints

We reduce motion planning time spent attempting infeasible
actions by generalizing motion planning failures. This failure
generalization does not affect completeness when different
task plans do not change the reachable configurations. If a state
post-configuration is connected, i.e., C(&o(cl s)) = T,
then the nonexistence of a motion plan from one configuration
qo in &Eo(op, s) to some configuration ¢, implies that no
plan to ¢, exists for any configuration in £yg (09, s). Though
we cannot in general prove nonexistence of motion plans, we
instead heuristically defer retrying these failed motion plans
at the current motion planning horizon. If the motion planner
failed to refine operator a; at state s, this may be because such
a plan does not exist. Instead of constraining the task planner
to produce any different plan as (1), we instead rule out, for
the current horizon level, all plans that attempt a; from state
s for any step. The following constraint asserts that operator
a; not be attempted at state s for all steps:

h
A (Sw . ﬁai[k]) 3)
k=0
Then, when we deepen the step and sampling horizons, we
likewise pop the added constraint of form (3) so that we will
later reattempt these operators with greater search depth.
Using constraint (3), we generalize motion planning failures
to all task steps. Such incremental constraint updates also
directly apply to additional geometric information from the
motion layer. For example, the specific objects preventing an
action could be estimated using MCR [35] or the heuristic
method of [72], further improving generalization of (3).

C. Completeness-preserving Plan Cache

We can reuse feasible motion plans without affecting
completeness whenever a different plan to move an object
does not change the reachable configurations. If a plan post-
configuration is connected, i.e., C(E40(A)) = T, then the
reachable goal configurations are the same starting from all
configurations in the plan post-configuration € 4o (A ). Conse-
quently, we need consider only a single motion plan for task
plan A to capture all reachable configurations from £40(A).
Conversely, if the post-configuration is not connected, i.e.,
C(Eag(A)) = L, then reachable goal configurations will
be different for the disconnected configuration regions. Thus,
considering only a single motion plan neglects configurations
reachable from the disconnected portion of €40 (A).

We use plan post-configuration connectivity to implement
a completeness preserving cache of motion plan prefixes. For
a given task plan A with some prefix a, if C(E40()) =T,
we first check for a cached motion plan for «, using it if it

Fig. 4: Physical validation of IDTMP. The robot iteratively
plans over actions for transferring blocks, stacking blocks, and
pushing the tray and generating collision-free paths for the
selected actions. The resulting task-motion plan is successfully
executed on the physical robot.

exists. Otherwise, we try to refine «, and if we find a motion
plan, we add it to the cache. This eliminates naive IDTMP’s
duplication of motion planning work for plan prefixes.

VII. EXPERIMENTAL RESULTS

We validate IDTMP on a physical robot and test scalability
for simulated scenes. The physical validation demonstrates
that IDTMP works for real planning problems with multiple
types of actions. We compare the scalability of IDTMP against
the planner in [36], which is the closest to our method in
terms of philosophy and performance guarantees. Both meth-
ods similarly couple the task and motion planner, and both
offer similar guarantees on probabilistic completeness. The
simulated scalability tests demonstrate that IDTMP improves
performance compared to the benchmark planner [36].

Our tests use simulated and physical Rethink Robotics
Baxter manipulators. We use Z3 4.3.2 [15] as our backend
SMT solver, the RRT-Connect [49] implementation in OMPL
[13] for motion planning, FCL [63] for collision checking,
and POV-Ray [24] for visualization. The benchmarks were
conducted on on an Intel® i7-4790 under Linux 3.16.0-4.
We randomly generate the benchmark scenes, resulting in
small variance in the results. Though the test domains use
axis-aligned grasps, this is not a limitation of our method,
and arbitrary grasps, e.g., based on precomputed grasp quality
metrics, are possible.

A. Physical Validation

We validate IDTMP on a physical manipulator for the
scenario in Fig. 1, where the robot must stack the blocks on
the tray and then push the tray. This domain demonstrates the
object coupling of the scene graph (see Def. 3) during tray
pushing, where for each object (i.e., block) frame ¢, its parent
o¢ (i.e. other block or tray) is the other object on which it rests.
Fig. 4 shows the robot executing the plan, demonstrating that
our overall system works for physical scenarios.

B. Scalability Tests

We first test scalability of IDTMP over increasing number
of objects (see Fig. 5). While task planning in IDTMP does
scale exponentially with the number of objects, it still performs
task planning for tens of objects in around one second. In
comparison, [36] scales worse than IDTMP for task planning
with increasing object count. Above five objects, task planning
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Fig. 5: Scenario testing scalability as the object count, and
correspondingly the discrete state space size, increase. (a) The
robot must move the marked object (blue) to the center of the
board (green arrow), removing the object that was there. (b)
compares the task-planning performance of IDTMP and [36]
over five trials for each object count. Motion-planning times
are comparable between both methods.
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Fig. 6: Scenario testing scalability as necessary plan length
increases. (a) The robot must move every block to a different
goal location. (b) compares task-planning performance of
IDTMP and [36] over five trials for each length. Motion
planning times were comparable between both methods.

using [36] took several minutes. Motion planning performance
for [36] and IDTMP are similar as both use a sampling-based
motion planner in the same way to refine candidate task plans.

Next, we test the scalability of IDTMP for increasing length
of the task plan that must be computed (see Fig. 6). Task
planning time scales exponentially with increasing plan length,
taking about 10 seconds to compute a plan that is 10 task
actions long In comparison, [36] scales worse than IDTMP
for task planning in the plan length test. Motion planning time
for [36] is similar to IDTMP, just as in the object count test.

C. Benchmark of IDTMP Extensions

Finally, we test the benefit of our completneness-preserving
extensions to IDTMP by rerunning the object count test (see
Fig. 5a) but with the grasping pose constrained to one side
of the object, resulting in many infeasible operations due
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Fig. 7: Comparison of Naive and Informed IDTMP. (a) the
object count test (see Fig. 5) was rerun with grasp poses
constrained to one side of the object to cause infeasible
actions. (b) compares naive and informed IDTMP planning,
averaged over five runs per object count. Our extensions
improve motion planning performance by an average of 4.75
times. Task planning time is not significantly changed.

to blocking objects (see Fig. 7). Task planning times are
unchanged, but the informed constraints speed up motion
planning an average of 4.75 times by reducing reattempted
motion planning for infeasible operations.

VIII. CONCLUSION

We have discussed the challenges and requirements of
TMP and presented a new TMP algorithm. First, the TMP
requirements and abstractions we present in Sec. II and Sec. IV
underlie our planner. Moreover, these abstractions model the
key features of task-motion domains and may aid the devel-
opment and analysis of other task-motion planners. Second,
our IDTMP algorithm is probabilistically complete, handles
domains with various actions, and models kinematic coupling.
Though the simple form of our algorithm duplicates work at
the motion planning level in order to achieve probabilistic
completeness over changing configuration spaces, we mitigate
this issue through geometric connectivity requirements for
typical domains, enabling algorithmic extensions to improve
performance. We validate IDTMP on a physical Baxter ma-
nipulator and show that IDTMP provides improved scalability
to object count and plan length compared to the manipulation
framework of He et al. [36], a previously developed, similar
task and motion planner. Finally, our incremental constraint
update approach is general to many types of geometric infor-
mation, and compatible constraints could be generated based
on related methods [35, 51, 57, 72] to extend this work.
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