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Abstract—This paper presents an approach for automatically
synthesizing and re-synthesizing a hybrid controller that guaran-
tees a robot will exhibit a user-defined high-level behavior while
exploring a partially known workspace (map).

The approach includes dynamically adjusting the discrete
abstraction of the workspace as new regions are detected by
the robot’s sensors, automatically rewriting the specification (for-
mally defined using Linear Temporal Logic) and re-synthesizing
the control while preserving the robot state and its history of task
completion. The approach is implemented within the LTLMoP
toolkit and is demonstrated using a Pioneer 3-DX in the lab.

I. INTRODUCTION

Consider the case of a “Search and Rescue” scenario where
a mobile robot is patrolling inside a collapsed building with
unknown rooms. The robot is required to explore all the
accessible rooms and search for survivors. The robot’s high-
level behavior must be guaranteed to ensure safety and mission
completion while expanding the map to include unknown
regions.

Recently, several approaches have been suggested for gener-
ating correct high-level robot behavior [14} 12} 8, |15} [11} 2} [20]
from an abstract description of a task; these approaches tackle
the inherent continuous problem of robot sensing, motion and
action by creating a discrete abstraction of the task, generating
a provably-correct discrete solution and implementing the so-
lution by composing a set of continuous low-level controllers
such that the overall continuous behavior of the robot is the
desired one.

The specification formalisms are usually a variant of tem-
poral logic, with Linear Temporal Logic (LTL) being the
most commonly used. The creation of the discrete solution is
based on ideas from formal methods, mainly model checking
[3] and synthesis [[17] when assuming no noise on sensors
and actuators (e.g. [14} [12} 20l 2]]), and probabilistic model
checking and policy synthesis for Markov Decision Processed
(MDPs) when uncertainty is taken into account (e.g.[15] [10]).
When implementing the continuous behavior, researchers have
considered potential field type motion planners (e.g. [14} [12])
as well as sampling-based approaches (e.g. [[L1} 2[]).
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What is common to all aforementioned approaches is that
the workspace is assumed to be known; that is, the robot is
required to perform its high-level task within a known map.
In the process of generating the control, the map is abstracted
to a graph where the nodes are regions in the map and edges
in the graph indicate that the robot can move between the
two regions without going through a third region. In general,
when considering a convex partition of a polygonal map, the
edges represent the adjacency of the regions (an edge exists
between nodes representing two regions that share a common
face) since there are several low-level controllers that have
been developed over the years that are guaranteed to drive a
robot from any point within the convex polygon to one of its
faces, and thus to the adjacent region (e.g. [4} [1} [L6]).

This paper relaxes the assumption of an a priori completely
known map; instead, an initial map is assumed which may
contain as little as one region, and as the robot is performing
its task, new regions are discovered and the task is adjusted
accordingly in an automatic and provable-correct manner. The
new regions are detected using an occupancy grid [7] and then
added to the known map, gradually expanding and creating a
larger map.

This work builds on the approach of [14] where a fragment
of LTL is the formalism used to captures tasks that are reactive,
meaning that the robot behavior depends on the occurrence
of environmental events, for example “continually patrol all
the rooms, stop if you see a person and ask them if they
need help”. Given a formula in the logic, a tractable synthesis
technique is used to generate an automaton such that all
its executions satisfy the LTL formula. The complexity of
synthesizing an arbitrary LTL formula is double exponential in
the size of the formula, but if the specification is restricted to a
specific fragment of LTL, the complexity becomes polynomial
in the state space [[17].

The contribution of this paper is in providing guaran-
teed high-level behavior of robots operating in unknown
workspaces. Specifically, this paper describes: (i) The set of
user-specified high-level tasks which is enriched by allowing
quantifiers (‘all’, ‘any’) over regions. This allows a user to say
“visit all offices”. (ii) The discrete abstraction of the workspace
that is updated on-the-fly based on sensor information, and
(iii) A re-synthesis algorithm. The algorithm preserves the task



Fig. 1: The robot is visiting the classrooms. The cone repre-
sents a hazardous item in front of a classroom and the raised
flag was the robot’s response to detecting the cone. The cup
contained a touch sensor and was used to collect assignments.

history and automatically update the instructions of the robot
behaviors, according to the new workspace.

Testing the re-synthesis method and algorithms in real en-
vironments with a physical robot equipped with range sensors,
gives rise to questions regarding when and how to decide a new
region is detected. As a first step toward a generalized solution
to the problem, assumptions regarding the environment are
made (Section [II).

The work described in this paper was implemented on
a physical robot in the lab, where the onboard laser range
scanner was used to detect previously unknown regions while
the robot was performing a high-level tasks. The task described
in Section [V]] required the robot to collect assignments from
students in classrooms and hand them to professors in their
offices. When the robot saw a hazardous item in front of a
classroom (a cone), it avoided entering that classroom and
raised a flag of warning (Fig. [[). The robot detected new
rooms, distinguished between classrooms and offices accord-
ing to their size, and continued behaving according to the
specification in the a priori unknown workspace.

The paper is structured as follows: Section [[I| presents back-
ground information regarding the approach and formalisms for
generating high-level correct robot control. Section [IT]] defines
the problem this paper is focusing on and the assumptions
that are made. Section [IV] discusses the enriched grammar
containing region quantifiers, and Section [V] describes the re-
synthesis process. Section [VI] describes the experiments and
the paper concludes in Section [VII}

II. BACKGROUND

This section presents the background information needed
for the remainder of the paper. It includes the definition
of the underlaying logical formalism, an overview of the
process of generating provably-correct robot control from
logical formulas and a description of LTLMoP [9]], the toolbox
that is used to generate the control and perform experiments.

A. Linear Temporal Logic (LTL) specifications

Linear Temporal Logic (LTL) is a modal logic that includes
in addition to Boolean operators (such as ‘not’, ‘and’, etc.),
temporal operators, thus allowing formulas to capture truth
values of atomic propositions () as they evolve over time.

LTL formulas are constructed from atomic propositions m €
AP according to the following recursive rules

@ == m|=ele Vol O | OOy ¢y
where Oy is ‘Next’, O is ‘Eventually’, and Oy is ‘Always’.
This work considers robot specifications that are defined
over a discrete abstraction of the robot motion and action
and are captured in a fragment of LTL. Specifically, the
atomic propositions comprise of a set X = {x1,...,2m}
of environment propositions corresponding to abstract sen-
sor information (e.g. “object detected”), and a set ¥ =
{r1,...7n, a1, ...,ax} of robot propositions that correspond to
the location of the robot (if r; is true then the robot is currently
in region ¢) and its actions a; (e.g.“flag is raised”).

The fragment of LTL considered in this work follows [17,
where formulas are of the form ¢ = (. = ¥s); @. is an
assumption about the sensor propositions, and thus about the
behavior of the environment, and ¢, represents the desired
behavior of the robot. Both ¢, and ¢, have the following
structure: e = @ A\ 9§ A g ps = ©; N @i A py, where:

e %, are non-temporal Boolean formulas constraining
the initial value(s) for the environment and robot respec-
tively. They are of the form B;, where B; is a boolean
formula over the set X UY.

e 7,07 represents safety assumptions on the environment
and safety requirements on the robot’s behavior. Safety
includes all behaviors that the environment or the robot
must always satisfy. ¢f constrains the next environment
state based on the current environment state and current
robot state, and ; constrains the possible next robot state
based on the current environment, current robot state, and
the next environment state. The formulas are of the form
0OB; where B; is a boolean formula over the set X UY U
OX for ¢§ and X UY UOX UQY for ¢f.

e g,y represent liveness assumptions for the environ-
ment and liveness requirements for the robot. The liveness
includes goals the environment or the robot should always
eventually satisfy. The formulas are of the form O ¢ B;
where B; is a boolean formula over the set X UY.

One property of the synthesis algorithm is that the order of
the formulas in @7 determines the sequence in which the robot
will fulfill its liveness requirements. For a liveness requirement
©i, the goal number gNum(p;) = 4 indicates that ¢, is in
the ¢-th position in the sequence of goals. For example, in
@y =001, AOO(ry V flag), the requirement that the robot
eventually go to r, is of gNum = O (the first liveness) and the
requirement of going to 7}, or raising the flag is of gNum = 1.

B. Discrete abstraction of the workspace

The robot’s workspace is assumed to be a 2 dimensional
polygonal environment. The motion of the robot in the



workspace is abstracted by a graph where each node represents
a region and the edges represent adjacency relations between
the regions. Leveraging controllers such as those of [4} [1} [16],
given a set of convex polygons, a robot can move between
any adjacent regions if there are no obstacles.

For example, from region 7 shown in Figure [2] the robot
can move to adjacent regions ro,r1,T3 or stay in ro. The
motion constraints are captured by:

D(Tg = (OTQ\/OTO\/OTl \/OTg))
C. Control generation

Given a robot task as an LTL formula belonging to the
fragment described above, if the task is synthesizable [18§]]
an automaton whose behaviors satisfy the formula will be
automatically generated (see [17, [14] for details).

The hybrid controller used to continuously control the robot
is based on the execution of the automaton. An admissible
input sequence is a sequence X1, Xo,... s.t. X; € 2% is the
set of environment propositions that are true at time step 7,
that satisfies (.. A run of the automaton under an admissible
input sequence is a sequence of states qg, q1, ..., which starts at
a possible initial state of the automaton: ¢y € Q. At each time
step, the robot sensor information is used to determine the truth
values of the environment propositions X, and together with
the current state g the next state ¢’ is determined following
the transition relation 4, i.e., ¢ = d(q, X). v is the state
labeling function where vy(¢) = y and y C Y is the set of
robot proposition that are true in state q. Based on the labels
of ¢/, the next region and the next actions are performed and
the appropriate low-level controllers are executed. The reader
is referred to [14]] for more details.

Every state ¢ € Q has an associated goal number, which
indicates the current goal (liveness requirement) the robot is
heading toward. This goal number is denoted by ~,(q).

D. LTL MissiOn Planner (LTLMoP)

Linear Temporal Logic MissiOn Planning (LTLMoP) [9]
is a Python-based, open-source toolkit that allows users to
control physical and simulated robots by specifying high-
level instructions in structured English. Furthermore, if a
specification contains behaviors that cannot be guaranteed
(they may be inconsistent or there may be an environment in
which the robot fails), no automaton will be synthesized and
LTLMOoP facilitates the process of understanding the problem
in the given specification [18]. The experiments described in
this paper were executed using LTLMOoP as further discussed
in Section

III. PROBLEM FORMULATION AND ASSUMPTIONS

This paper focuses on guaranteeing the execution of high-
level tasks by a mobile robot operating in an a priori unknown
environment. While executing it’s mission, the robot detects
regions that are not defined in its current map. The basic
assumptions regarding the unknown regions are as follows.
First, the robot starts the execution with a partially known
map. The initially known map can be arbitrary small, on the

order of the size of the robot. This assumption is essential,
since the robot must be positioned in a free area first. Second,
the robot must have the capabilities to detect new regions, i.e.,
it must have adequate sensors that can sense obstacles or lack
thereof.

The robot is assumed to have the appropriate sensors and
actuators to perform the high-level tasks it is instructed to
do. These sensors and actuators are assumed to be binary, as
described in Section [

Definition 1: Robot model. The robot is assumed to be of
size D, where size can be the diameter of a circular robot, or
the longest dimension in the plane of movement. We assume
that the robot’s structure and dynamic properties constrain its
movement such that it has a minimal operating circular area of
radius sD (for example for turning), where s > 1 is a safety
factor which depends on the robot’s structure and dynamic
properties. The robot’s position and orientation relative to a
fixed frame are assumed to be known.

Definition 2: Region. A region p with index 7, denoted p’, is
a polygon in the plane, defined as a circuit of j line segments,
sides [3]], or edges [6], pip3,pops, - .., p;py joining j = 2"l
points, or vertices, pi,p3,ps,...,p;- The edges of p' must
not cross each other. The polygon is regarded as consisting of
its vertices, edges, and the interior area bounded by it. Each
region is simply connected, meaning there are no holes within
it. The region p’ can be non-convex. A region is free from
obstacles, and it contains a bounded circle r; whose diameter
d,, satisfies d,, > sD to comply with Definition

Definition 3: Initial region: The robot starts from initial
region p’, which conforms to Definition

Definition 4: Workspace. The workspace is the map the
robot uses, in which its operation can be guaranteed and is
composed of a set of regions as defined above. The current
workspace is assumed to be known in each step ¢, and is
denoted P?. A step is defined as a stage of execution, for which
the map does not change. If the map changes, as explained
later, the step is incremented. Each workspace has a boundary
defined as follows.

Definition 5: Boundary. The boundary B* of a workspaces
P' is defined as a polygon, or a set of polygons, composed
of all the edges of the regions of P? which are not shared
between two regions. If the workspace is a simple polygon,
its boundary is composed from only one polygon. However, if
the workspace contains holes, the boundary is composed from
an outer polygon, and another polygon for each hole. Within
each step, the workspace is assumed to be static inside its
boundary, but dynamic in the sense that a previously occupied
boundary edge can become unoccupied and serve as the edge
of a new detected region.

Definition 6: Expansion. The workspace can be dynami-
cally expanded in each step. The robot starts in step 0 with
initial workspace P°, where P° contains at least the initial
region p’, and is possibly composed of a total of g regions,
such that PO = p"t Up? Up’...Up"9. In each step i, a new
region p’ is added. Each new added region p’ conforms to



Fig. 2: Left: Initial known map. The robot position is marked
with a white circle. Right: Two new, unknown regions, safel,
dangerl, are updated when the robot visits 72, r3

Definition 2 Moreover, each p* must be adjacent to at least
one known region ,p", h = 1...i —1 or p* € P°. The
workspace is recursively defined as follows, P* = (JJ_, p'%,
Pi=P=tupi, Vi > 0.

New-region sensor: The robot is assumed to have a new-
region sensor, which can detect new regions. The new-region
sensor is capable of distinguishing, up to its operating range,
between free and occupied spaceﬂ According to Definition
the dimensions of a new region must have minimal values,
therefore, the sensor’s operating range must be greater than
sD.

Problem 1: (Operating in an unknown environment) Given
an initial known workspace, P°, an initial region p’ € PY,
a mobile robot equipped with a new-region sensor, initial
conditions and task specification given in structured English,
construct a controller such that the robot’s behavior satisfies
the user specification, in any admissible, possibly unknown
environment.

The problem formulation is illustrated in the following
example which demonstrates a simple high-level task defined
over an unknown workspace and executed using LTLMoP.

Example 1: Search and Rescue mission.

Consider the case of a ”Search and Rescue” scenario where
a mobile robot is placed in a building which collapsed due
to an earthquake. The robot must explore the inner parts of
what is left from the building and search for survivors. The
building is partially ruined, such that the original blueprint
cannot be used. The robot is placed in a partially clear area,
shown in Figure [2] (Left). There are two groups of regions:
dangerous and safe. The robot is required to visit all the
dangerous regions: r2,r3, and to search for survivors (people).
If the robot finds people, it will guide them back to one of
the safe places: r0 or rl. If a new region is detected, it must
be identified as a safe or as a dangerous region, and then be
added to the map.

IV. GRAMMAR

The grammar [13} 9] used by LTLMoP has been enriched
with quantifiers and reactions to new regions needed for
defining tasks in unknown maps.

The new-region sensor should be some sort of a range sensor (could be
infrared, ultrasonic, laser scanner or camera using vision techniques)

A. Quantifiers

Consider the scenario in Example [I] the same task is
assigned over multiple regions. When a new region is detected,
no matter safe or dangerous, extra specification is needed for
defining the tasks over the new region. Therefore an automatic
process for assigning tasks over multiple regions is necessary.

To deal with such conditions, quantifiers are introduced in
this section. To apply quantifiers over multiple regions, one
defines groups as follows:

o Group groupName is regionl, region2, region3...

If the groupName is used together with the quantifiers “all” or

“any”, the sentences are automatically converted into LTL for-

mulas over the regions. The translation process is as follows:
if quantifier ‘any’:

result = join region;[:] with V

substitute groupName with result

if quantifier ‘all’

result; = substitute groupName with region;

join result;[:] with A

Revisiting Example [T} the new specification would be:

o Group Safe is rg, 1

o Group Dangerous is 13, T3

« If you are not activating guide then visit all Dangerous

« If you are activating guide then visit any Safe

is translated into
Nie(2,3} OO ((—a?™) = r;)
A D<>((a9“ide) = (roVry))

These quantifiers facilitate writing specifications for un-
known workspaces as they do not require the explicit enumer-
ation of all regions. When a new region is detected, the user is
not required to manually write the additional specification and
the robot is able to automatically re-synthesize the controller
and resume the execution. The grammar for re-synthesis is
introduced in Section [[V-B] and the algorithm is introduced in
Section [Vl

B. Specification for re-synthesis

Now assume, in Example m when the robot enters 72, it
detects a new dangerous region dangerl adjacent to r2. Then,
when it enters r3, it detects a new safe region safel adjacent
to r3. The new workspace is shown in Figure [2] (Right).

We define a special robot action “re-synthesize”, which ter-
minates the execution of the hybrid controller and re-generates
the controller. “re-synthesize” is used in the same manner as
a robot proposition in the requirements specification:

« If you are sensing regionSensor then do re-synthesize.
The re-synthesize action is activated when the regionSensor
returns true.

If the user explicitly indicates which group to add the new
region to, the extra indication is allowed as follows:

o If regionSensor then do re-synthesize and add into group-

Name.
The following relation is defined: regionSensor — groupName.
Later, during the re-synthesis process, if regionSensor = True,



the corresponding groupName is returned to ensure that the
correct group is updated with the new region. Furthermore,
only specifications applied to this group will need to be
rewritten as new LTL formulas. If the robot is capable of
distinguishing between different features of the new regions,
the detected regions can be added into different groups ac-
cordingly. One sensor proposition for each of the groups is
necessary, as in Example [T}

« If you are sensing safe-new-region then do re-synthesize
and add it into Safe.

o If you are sensing dangerous-new-region then do re-
synthesize and add it into Dangerous.

V. CONTROLLER RE-SYNTHESIS DURING EXECUTION

This section describes the algorithms and automated pro-
cess for automatically re-synthesizing the high-level controller
when new areas are found. It addresses the special robot action
re-synthesize, the need for capturing the current robot state and
goal, the detection of a new region using sensors, the process
of modifying the discrete abstraction of the workspace and
the algorithm for creating and synthesizing a modified LTL
formula.

A. The robot action “re-synthesize”

Detection of new region is captured by a Boolean envi-
ronment proposition, regionSensor. The re-synthesis action is
captured by a robot proposition. The two propositions are
denoted as s"¢WTTegiOn and gl syYnthesize regpectively. The
specification “If you are sensing regionSensor then do re-
synthesize” is captured by the LTL formula:

D(Osnew—region = Oare—synthesize)) (2)

The “re-synthesize” action is a special action since the low-
level controller associated with it terminates the execution
of the automaton, and calls the module to rewrite the LTL
formula and re-synthesize an appropriate automaton.

The re-synthesis process is shown in Algorithm [} In line
1, the execution of the current automaton is terminated. The
following two propositions are reset: s"ew~region — [glse
and gre—synthesize — [glse. In lines 2-3 the environment
propositions and robot propositions of the current state are
recorded, in order to describe the initial state of the robot when
resuming the execution. In line 4, the initial condition for the
new automaton is obtained and the LTL formulas ¢j, ¢f for
initial conditions are updated. In line 5, the new region propo-
sition is added as: J> = Y U7 new- The process of modifying
the workspace and rewriting the LTL formula ¢7 is discussed
in Section In line 6, the goal number of the liveness
requirement toward which the robot is currently moving is
recorded. In line 7, re-ordering of the goal requirements is
achieved by rewriting the LTL formula ¢g as described in
Algorithm [2] and Section In lines 8-9, the updated LTL
formula is synthesized and the new automaton is executed.

Algorithm 1 Low-level controller for the re-synthesize action

Break execution, reset sne€w—region  gre—synthesize
CurrRobotState < (q)

CurrEnvState < values of sensor propositions
NewlnitState: ¢y < CurrRobotState A CurrEnvState
Modify discrete abstraction in workspace, get Y (see
Section

CurrGoalNum <= v,(q)

Modify liveness conditions in LTL (see Algorithm
Re-synthesize the automaton

Load new automaton and resume execution

A

0O 2 3D

B. Modifying the discrete abstraction

As defined in Section the robot maintains a map of the
workspace and expands it on-the-fly. The map maintained by
the robot is composed of a list of polygonal regions. At step 1,
the robot is equipped with a map of the already known area,
P?, as well as its outer boundary, B°.

The new region sensor repeatedly checks each edge of the
current region p°, the region where the robot is currently
located in. If the edge also belongs to the boundary, the new
region sensor tests whether there is a new region emanating
from it. Defining a new region is possible only if the new
regions fulfill the following conditions: the length and the
width of the new region, and the width of the edge the new
region is emanating from, must be greater than sD.

Since the new region is adjacent to the known map, there
must exist a transition boundary between the new region
and the known regions. The motion constraint graph is re-
generated from the new adjacency relationships between the
regions, which is written into the robot safety assumption 3.

Revisiting Example |1} the change in the known workspace
results in an updated 3

O(ro = (Oro vV Orz))

AB(ry = (Or1 vV Ora))

AO(ry = (Ora vV OroVOr vV Ors V Odangery))
AO(rg = (Ors vV Or2 vV (Osafer))

A O(danger; = (Odanger, V Ors))

AO(safer = (Osafer VOrs))

C. Rearranging the liveness conditions

—~ Y~~~

Given the current goal number, the robot is able to deter-
mine which liveness requirement it was pursuing. Therefore,
it is able to distinguish between the complete and incomplete
goals. The history of the completed high-level tasks is captured
by re-assigning the order of the goals. The robot is allowed to
first address incomplete liveness requirements, and in addition,
to choose the exploration strategies by inserting the new goal
at different positions, either first, thereby creating a depth first
strategy, or afterwards, creating a breadth first strategy.

The detailed process is shown in Algorithm [2] In lines
1-2, the liveness requirements are classified as complete or
incomplete goals. In line 3, the user’s predefined group for the



Algorithm 2 Rewriting the LTL formula for liveness require-
ments

CompGoals <= ¢ € ¢ , gNum(p) < CurrGoalNum
IncompGoals <= ¢ € ¢; , gNum(p) > CurrGoalNum
groupName <— regionSensor
Translate specs with groupName into LTL
newLiveness < liveness with newRegion in new LTL
if Depth First Order then

g < newLiveness A IncompGoals A CompGoals
end if
if Breadth First Order then

¢y < IncompGoals A newLiveness A CompGoals
: end if

R A A R ol e

_.—
Il

new region is loaded. In lines 4-5, the liveness with the relevant

groupName 1is translated into LTL, as described in Section

In lines 6-8, the goals are re-ordered, if following the

Depth First strategy, the new goal is put before incomplete

goals. In lines 9-11, if following the Breadth First strategy,

the new goal is added after the set of incomplete goals.
Revisiting Example [I] assume that when the new region

dangerl is detected, the robot has already visited r1, r2, so the

priority of the original goals have been changed. The robot is

also capable of choosing between either a depth-first order or

breadth-first order, which is achieved as follows:

Depth First(Alg[2] In 6-8): | Breadth First(Alg[2] In 9-11):

Yy = g =

0o ((ma9%9¢) = danger1) | Oo ((—a9%9¢) = r3)

AO o ((ma9%ide) = r3) AO o ((ma9%id¢) = danger )

AO o ((ma9%ide) = ry) AO o ((ma9uide) = ry)

AO o ((a9%9€) = (ro V1)) | ADo ((a9%9€) = (ro V 1))

VI. EXPERIMENTS

The new algorithms and procedures for detecting and
adding unknown regions to the synthesized controller were
validated in a real environment with a physical robot. The
experiments illustrates how high-level tasks are automatically
adjusted while the environments are being expanded.

Example 2: Classroom assistant
The robot is looking for students who need to submit assign-
ments to their professors in the workspace depicted in Fig. [3]
The robot is wandering through the classrooms until it finds
such a student. Once it is handed an assignment, it searches
for a professor in the offices until it finds one. If a door opens
(new classroom or new office), the robot explores that region,
classifies it, and continues executing its task accordingly. If
the robot detects a hazardous item in front of classroom?2, it
avoids entering that classroom and it raises its flag as warning.
The specifications, given in structured English, are presented
in Listing 1.

A. Experimental Setup

The experimental test bed includes a mobile robot which
can move autonomously in the environment and detect new
regions. Additionally, the robot is able to perform other actions

Listing 1 Specification for the experiments.

Environment starts with false

Robot starts with false

Always not (newClassroom and newOffice)

Always not ((newClassroom or newOffice)

Group Classrooms is classrooml

Group Offices is officel

Do flag if and only if you are sensing hazardous

If you are sensing newClassroom then do re-synthesize and
add to Classrooms

If you are sensing newOffice then do re-synthesize and add
to Offices

If you are sensing newClassroom or you are sensing
newOffice then stay

If you are not sensing newClassroom and you are not sensing
newOffice then do not re-synthesize

If you are not sensing assignment and you are not
activating re-synthesize then visit all Classrooms

If you are sensing assignment and you are not activating re
—-synthesize then visit all Offices

If you are not sensing hazardous and you are not sensing
assignment and you are not activating re-synthesize
then visit classroom2

If you are sensing hazardous then always not classroom?2

and hazardous)

Fig. 3: Left: The initial map is composed of halll, hall2,
classrooml, classroom2, officel. Right: field top view

such as sensing objects (e.g., cones) and performing actions
(e.g., raising a flag).

The mobile robot used is based on the Pioneer 3-DX mobile
robot platform, upgraded with a compact PC on top, and
sensors and actuators as follows. For sensing new regions, a
Hokuyo URGO04-LX Scanning Laser Range Finder was used.
The range finder scans at 10 Hz with a field of view of 240
degrees, and angular step size of 0.36 degree. The URG range
is approximately 4 meters. The scanner data was overlaid
on an occupancy grid with resolution of 10 [cm]. LTLMoP
communicated with the robot via wireless communication.

The experiments were conducted in an indoor environment.
The Vicon Motion Capture system was used for obtaining
accurate pose information for the robot. The Vicon system
consists of 24 infrared cameras mounted on a truss attached
to the ceiling, allowing for accurate tracking of rigid bodies,
marked with reflective markers.

The new-region sensor detects new regions as explained in
Section [V-B] The new region must be at least sD wide and
sD deep relative to the current region edge it is emanating
from. The new region sensor scans the occupancy grid for
unoccupied cells, starting from the edges of the current region.
It only scans edges which are contained in boundary edges. If
the sensor finds an opening with minimal width, it continues



to scan parallel lines on the grid, advancing outward from the
current region. The scan continues until a line is not wide
enough. During the scan, the start and end points of each line
are recorded, along with its depth, such that at the end of the
scan, the new region can be defined according to the maximal
width, depth or area, as long as it fulfills the minimal size
requirements. The new-region sensor distinguishes between
a small new region and a large new region by checking
whether either the width or the depth of the new region
exceeds a certain threshold. In the reported experiment, the
threshold was set to 2sD, D = 0.46 [m] and s = 1.5. In
the experiments scenario, the small regions are referred to
as offices and the large regions as classrooms. In order to
maintain the guarantees, the new-region sensor is implemented
conservatively. The sensors and robot propositions used are:
Sensors: newClassroom, newOffice, hazardous, assignment

« newClassroom/newOffice: The two propositions are at-
tached to the same new-region sensor. If the detected new
region is larger than the threshold, the sensor returns true
in newClassroom. Otherwise newOffice returns true.

o hazardous: A red cone served as a hazardous item. The
cone detector is composed of a software blob detector,
which receives the image frames from a video camera
mounted on the mobile robot.

« assignment: The object sensor, which is a cup that can
sense the presence or absence of objects within, was used
to sense the presence of an assignment.

Actuators: flag, re-synthesize:

« flag: The robot action is raising a flag if the proposition
value is true, or lowering a flag if false.

« re-synthesize: When the proposition is true, it activates
the local controller that terminates the execution and
starts the re-synthesis process.

B. Description of the experiment

The robot starts in classrooml, and heads toward halll.
As soon as it enters halll, it detects new! (Fig. Fadb) and
classifies it as a large room, thus adding it to the group
classrooms and then re-synthesizing. It visits region newl
and classrooml according to the specifications, then it heads
toward classroom2. On its way, the robot passes through
hall2, where it detects new2 (large) (Fig. ficJdd), adds it to
group classrooms, and re-synthesizes. Immediately afterwards,
it detects new3 (small) (Fig. Bc4d), adds it to group offices
and re-synthesizes. Afterward, it continue to classroom new2,
there, a student hands the robot an assignment (Fig. @),
and the robots start searching for the professor to submit the
assignment to in the offices new3 and officel. Since the robot
does not find the professor in those offices, it continues to
search the offices until a door to a new office is opened, the
robot detects new4 (Fig. cdd), adds it to group offices and
re-synthesizes. The robot moves to the new4 office, there it
finds the professor and hands him the assignment (Fig. ).
Since now the robot does not have assignments to deliver,
it continues to search for students in the classrooms, starting
with classroom2 which it did not visit, yet.

hall2

office1

(a) After detecting the classroom newl. (b) LTLMoP map after adding
The boundary is in yellow, the regions are classroom newl.
separated by turquoise lines.

(c) After adding classroom new?2 and of- (d) LTLMoP map after the ad-

fices, new3,new4. dition of the office new4.

(e) Student submit assignment to (f) Robot submit assignment to pro-
robot in classroom2. fessor in office new4.

(g) Avoiding classroom2 and raising the (h) Visiting the office new3
warning flag as a response to the hazardous with assignment in the cup
cone.

Fig. 4: Assignment collecting and handing experiment

The robot continues its correct execution according to
the specifications, continuously searching for students with
assignments and handing them to professors. After some time,
a hazardous item appears in front of classroom2 (Fig. [Ag).
When the robot is in hall2 and heading to classroom2, it
detects the hazardous item, consequently, it raises the warning
flag (Fig. g), skips classroom?2 and continues to new2 instead.
After the hazardous item exits the view of the sensor, the robot
lowers the flag, and continues execution with correct behavior.



From the experiment execution [[19], it is evident that under
the assumptions of Section [[II} correct behavior is guaranteed
even when adding regions that are unknown a priori. Moreover,
the robot correctly classified the new regions to offices and to
classrooms according to their sizes, and added them to the
specifications accordingly.

VII. CONCLUSIONS AND FUTURE WORK

This paper describes an approach to guaranteeing high-level
robot behaviors in partially known and continuously updated
workspaces through re-synthesis. This includes modifying the
discrete abstraction of the workspace on-the-fly, preserving
the robot’s state and history of task progress and sequencing
the liveness requirements such that the robot exhibits the
desired behavior. The proposed methods and algorithms were
successfully tested in experiments. Moreover, it was shown
that specific features of the new detected regions can be used to
classify them into different groups, enabling the automation of
redefinition of the high level task accordingly, and maintaining
the correct execution.

The process of changing the controller is automated and a
new controller is guaranteed to be correct with respect to the
specifications. Furthermore, if a controller cannot be gener-
ated, it means that the task can no longer be achieved in the
modified workspace and LTLMoP can provide explanations
for the failure.

Ongoing research is focused on improving the new region
detection, such that the under approximation will be closer to
the exact free area. Another research direction aims to deal
with the changes in known regions, such as the unpredictable
appearance of obstacles which may result in re-decomposition
of the regions, or even in unrealizable specification.
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