Study of the monosaccharide composition of water-soluble polysaccharide complexes and pectic substances of Pimpinella anisum herbs

Authors

DOI:

https://doi.org/10.15587/2519-4852.2020.206776

Keywords:

biopolymers, WSPC, PS, Pimpinella anisum, laxative effect, drug "Senadex", herb, monosaccharides, quantitative determination, thin-layer chromatography, liquid chromatography

Abstract

In the study of the pharmacological activity of WSPC and pectin substances isolated from the Pimpinella anisum herbs, it was found that pectin substances are practically non-toxic and exhibit a pronounced laxative effect, not inferior to the comparison drug «Senadex».

The aim of the work. The study of the monosaccharide composition of water-soluble polysaccharide complexes and pectin substances isolated from Pimpinella anisum herbs.

Materials and methods. For analysis, we used Pimpinella anisum herbs, harvested in the summer of 2019 in Kharkov. The study was carried out by liquid chromatography on an Agilent 1290 liquid chromatograph, detection was refractometric.

Results and discussion. WSPC isolated from the Pimpinella anisum herbs contain two monosaccharides - glucose and ramnose. Rhamnose with a content of 215.5 mg / g is the dominant sugar, glucose is present in a much smaller amount - 17.5 mg / g. The glucose content in PS is approximately the same - 12.3 mg / g. Moreover, in pectins in the absence of ramnose, the presence of galactose and arabinose in the amount of 59.8 mg / g and 69.5 mg / g, respectively, was established.

Conclusions. Using liquid chromatography, the presence of two monosaccharides in WSPC and three monosaccharides in pectin isolated from Pimpinella anisum herbs was established

Author Biographies

Sergii Kolisnyk, National University of Pharmacy Pushkinska str., 53, Kharkiv, Ukraine, 61002

Doctor of Pharmaceutical Sciences, Professor

Department of Analytical Chemistry

Vadym Khanin, National Pharmaceutical University Pushkinska str., 53, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Industrial Pharmacy and Economics

Ulugbek Akbar ugli Umarov, National University of Pharmacy Pushkinska str., 53, Kharkiv, Ukraine, 61002

Postgraduate Student

Department of Analytical Chemistry

Oksana Koretnik, National University of Pharmacy Pushkinska str., 53, Kharkiv, Ukraine, 61002

PhD, Assistant

Department of Pharmaceutical Chemistry

References

  1. Olennikov, D. N. (2014). Polysaccharides. Current state of knowledge: an experimental and scientometric investigation. Chemistry of Plant Raw Material, 1, 5–26. doi: http://doi.org/10.14258/jcprm.1401005
  2. Zorikova, O. V., Manyahin, A. Yu., Borovaya, S. A., Railko, S. P. (2018). Seasonal dynamics of polysaccharid content in raw materials reynoutria japоnica. Chemistry of Plant Raw Material, 3, 33–39. doi: http://doi.org/10.14258/jcprm.2018033777
  3. Trigui, I., Yaich, H., Sila, A., Cheikh-Rouhou, S., Bougatef, A., Blecker, C. et. al. (2018). Physicochemical properties of water-soluble polysaccharides from black cumin seeds. International Journal of Biological Macromolecules, 117, 937–946. doi: http://doi.org/10.1016/j.ijbiomac.2018.05.202
  4. Harholt, J., Suttangkakul, A., Vibe Scheller, H. (2010). Biosynthesis of Pectin. Plant Physiology, 153 (2), 384–395. doi: http://doi.org/10.1104/pp.110.156588
  5. Rascón-Chu, A., Martínez-López, A. L., Carvajal-Millán, E., Ponce de León-Renova, N. E., Márquez-Escalante, J. A., Romo-Chacón, A. (2009). Pectin from low quality “Golden Delicious” apples: Composition and gelling capability. Food Chemistry, 116 (1), 101–103. doi: http://doi.org/10.1016/j.foodchem.2009.02.016
  6. Masmoudi, M., Besbes, S., Abbes, F., Robert, C., Paquot, M., Blecker, C., Attia, H. (2010). Pectin Extraction from Lemon By-Product with Acidified Date Juice: Effect of Extraction Conditions on Chemical Composition of Pectins. Food and Bioprocess Technology, 5 (2), 687–695. doi: http://doi.org/10.1007/s11947-010-0344-2
  7. Ovodov, Yu. S., Golovchenko, V. V., Gyunter, E. A., Popov, S. V. (2009). Pektinovyie veschestva rasteniy evropeyskogo Severa Rossii. Yekaterinburg, 111.
  8. Suvakanta, D., Narsimha, M. P., Pulak, D., Joshabir, C., Biswajit, D. (2014). Optimization and characterization of purified polysaccharide from Musa sapientum L. as a pharmaceutical excipient. Food Chemistry, 149, 76–83. doi: http://doi.org/10.1016/j.foodchem.2013.10.068
  9. Sun, Y. (2011). Structure and biological activities of the polysaccharides from the leaves, roots and fruits of Panax ginseng C.A. Meyer: An overview. Carbohydrate Polymers, 85 (3), 490–499. doi: http://doi.org/10.1016/j.carbpol.2011.03.033
  10. Shibata, H., Kimura-Takagi, I., Nagaoka, M., Hashimoto, S., Aiyama, R., Iha, M. et. al. (2000). Properties of fucoidan fromCladosiphon okamuranustokida in gastric mucosal protection. BioFactors, 11 (4), 235–245. doi: http://doi.org/10.1002/biof.5520110402
  11. Sun, Y. (2014). Biological activities and potential health benefits of polysaccharides from Poria cocos and their derivatives. International Journal of Biological Macromolecules, 68, 131–134. doi: http://doi.org/10.1016/j.ijbiomac.2014.04.010
  12. Tyagi, V., Sharma, P., Malviya, R. (2015). Pectins and Their Role in Food and Pharmaceutical Industry: A Review. Journal of Chronotherapy and Drug Delivery, 6 (3), 65–77.
  13. Kushi, L. H., Doyle, C., McCullough, M., Rock, C.L., Demark-Wahnefried, W., Bandera, E. V. et. al. (2012). American Cancer Society Guidelines on Nutrition and Physical Activity for Cancer Prevention: Reducing the Risk of Cancer With Healthy Food Choices and Physical Activity. CA: A Cancer Journal for Clinicians, 62 (1), 30–67. doi: http://doi.org/10.3322/caac.20140
  14. Pietrzyk, L., Torres, A., Maciejewski, R., Torres, K. (2015). Obesity and Obese-related Chronic Low-grade Inflammation in Promotion of Colorectal Cancer Development. Asian Pacific Journal of Cancer Prevention, 16 (10), 4161–4168. doi: http://doi.org/10.7314/apjcp.2015.16.10.4161
  15. Kaczmarczyk, M. M., Miller, M. J., Freund, G. G. (2012). The health benefits of dietary fiber: Beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metabolism, 61 (8), 1058–1066. doi: http://doi.org/10.1016/j.metabol.2012.01.017
  16. Brownlee, I. A. (2011). The physiological roles of dietary fibre. Food Hydrocolloids, 25 (2), 238–250. doi: http://doi.org/10.1016/j.foodhyd.2009.11.013
  17. Torralbo, D. F., Batista, K. A., Di-Medeiros, M. C. B., Fernandes, K. F. (2012). Extraction and partial characterization of Solanum lycocarpum pectin. Food Hydrocolloids, 27 (2), 378–383. doi: http://doi.org/10.1016/j.foodhyd.2011.10.012
  18. Baluja, Z., Kaur, S. (2013). Antihypertensive aroperties of an apple peel – can apple a day keep a doctor away? Bulletin of Pharmaceutical and Medical Sciences, 1, 9–16.
  19. Yang, X., Zhao, Y., Lv, Y. (2007). Chemical Composition and Antioxidant Activity of an Acidic Polysaccharide Extracted fromCucurbita moschataDuchesne ex Poiret. Journal of Agricultural and Food Chemistry, 55 (12), 4684–4690. doi: http://doi.org/10.1021/jf070241r
  20. Kratchanova, M., Nikolova, M., Pavlova, E., Yanakieva, I., Kussovski, V. (2010). Composition and properties of biologically active pectic polysaccharides from leek (Allium porrum). Journal of the Science of Food and Agriculture, 90 (12), 2046–2051. doi: http://doi.org/10.1002/jsfa.4050
  21. Holck, J., Hotchkiss, A. T., Meyer, A. S., Mikkelsen, J. D., Rastall, R. A. (2014). Production and Bioactivity of Pectic Oligosaccharides from Fruit and Vegetable Biomass. Food Oligosaccharides. Wiley-Blackwell, 76–87. doi: http://doi.org/10.1002/9781118817360.ch5
  22. Wicker, L., Kim, Y., Kim, M.-J., Thirkield, B., Lin, Z., Jung, J. (2014). Pectin as a bioactive polysaccharide – Extracting tailored function from less. Food Hydrocolloids, 42, 251–259. doi: http://doi.org/10.1016/j.foodhyd.2014.01.002
  23. El-Gamal, S., Ahmed, H. (2017). Influence of Different Maturity Stages on Fruit Yield and Essential Oil Content of Some Apiaceae Family Plants A: Anise (Pimpinella anisum, L.). Journal of Plant Production, 8 (1), 119–125. doi: http://doi.org/10.21608/jpp.2017.37824
  24. Gülçın, İ., Oktay, M., Kıreçcı, E., Küfrevıoǧlu, Ö. İ. (2003). Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chemistry, 83 (3), 371–382. doi: http://doi.org/10.1016/s0308-8146(03)00098-0
  25. Lee, J. B., Yamagishi, C., Hayashi, K., Hayashi, T. (2011). Antiviral and Immunostimulating Effects of Lignin-Carbohydrate-Protein Complexes fromPimpinella anisum. Bioscience, Biotechnology, and Biochemistry, 75 (3), 459–465. doi: http://doi.org/10.1271/bbb.100645
  26. Karimzadeh, F., Hosseini, M., Mangeng, D., Alavi, H., Hassanzadeh, G. R., Bayat, M. et. al. (2012). Anticonvulsant and neuroprotective effects of Pimpinella anisum in rat brain. BMC Complementary and Alternative Medicine, 12 (1). doi: http://doi.org/10.1186/1472-6882-12-76
  27. Jamshidzadeh, A., Heidari, R., Razmjou, M., Karimi, F., Moein, M. R., Farshad, O. et. al. (2015). An in vivo and in vitro investigation on hepatoprotective effects of Pimpinella anisum seed essential oil and extracts against carbon tetrachloride-induced toxicity. Iranian journal of basic medical sciences, 18 (2), 205–211.
  28. Al Mofleh, I. A., Alhaider, A. A., Mossa, J. S., Al-Soohaibani, M. O., Rafatullah, S. (2007). Aqueous suspension of anise “Pimpinella anisum” protects rats against chemically induced gastric ulcers. World journal of gastroenterology, 13 (7), 1112. doi: http://doi.org/10.3748/wjg.v13.i7.1112
  29. Tirapelli, C. R., de Andrade, C. R., Cassano, A. O., De Souza, F. A., Ambrosio, S. R., da Costa, F. B., de Oliveira, A. M. (2007). Antispasmodic and relaxant effects of the hidroalcoholic extract of Pimpinella anisum (Apiaceae) on rat anococcygeus smooth muscle. Journal of Ethnopharmacology, 110 (1), 23–29. doi: http://doi.org/10.1016/j.jep.2006.08.031
  30. Kolisnyk, S. V., Umarov, U. A., Dynnyk, K. V., Fathullaeva, M., Shabilalov, A. A., Gazieva, A. S. (2020). The study of the acute toxicity and the laxative effect of pectins from Pimpinella anisum herb. Clinical Pharmacy, 24 (2), 52–55. doi: http://doi.org/10.24959/cphj.20.1528
  31. Drozdova, I. L., Denisova, N. N. (2011). Analiz polisakharidnogo sostava travy korostavnika polevogo flory Centralnogo Chernozemia. Nauchnye vedomosti BelGU. Seriia. Medicina. Farmaciia, 4 (99), 161–164.
  32. Derzhavna Farmakopeya Ukrayini. Vol. 1 (2015). Kharkiv: DP «Ukrayinskiy naukoviy farmakopeyniy tsentr yakosti likarskih zasobiv», 1128.
  33. Ghlissi, Z., Kallel, R., Krichen, F., Hakim, A., Zeghal, K., Boudawara, T. et. al. (2020). Polysaccharide from Pimpinella anisum seeds: Structural characterization, anti-inflammatory and laser burn wound healing in mice. International Journal of Biological Macromolecules, 156, 1530–1538. doi: http://doi.org/10.1016/j.ijbiomac.2019.11.201

Downloads

Published

2020-06-30

How to Cite

Kolisnyk, S., Khanin, V., Umarov, U. A. ugli, & Koretnik, O. (2020). Study of the monosaccharide composition of water-soluble polysaccharide complexes and pectic substances of Pimpinella anisum herbs. ScienceRise: Pharmaceutical Science, (3 (25), 33–38. https://doi.org/10.15587/2519-4852.2020.206776

Issue

Section

Pharmaceutical Science