Toll-like receptors and Streptococcus mutans: An updated review article

Main Article Content

Fatima Zuhair Muhammad Al-Alawi
Ashraf Kariminik
Elaheh Tajbakhsh

Keywords

Streptococcus mutans, Toll-like Receptors, Inflammation

Abstract

It has been reported that toll-like receptors (TLRs) are the main innate immune receptors that recognize gram-positive pathogen-associated molecular patterns (PAMPs). The molecules can induce expression of the innate immune-related molecules that are essential against the bacteria. Streptococcus mutans (S. mutans) is a potential caries-associated pathogen, and innate immunity plays a key role in inhibiting its development and the progression of inflammatory responses. Recently, the roles played by TLRs against S. mutans and the induction of inflammatory responses were evaluated by several investigations. This review article discusses updated information regarding the roles played by TLRs and their potential therapeutic effects against S. mutans.

Abstract 255 | PDF Downloads 382 HTML Downloads 0 XML Downloads 5

References

1. Zaatout N. Presence of non-oral bacteria in the oral cavity. Arch Microbiol. 2021;203(6):2747–60. 10.1007/s00203-021-02300-y

2. Clarke JK. On the bacterial fin the etiology of dental caries. Br J Exp Pathol. 1924;5(3):141–7.

3. Klein MI, Hwang G, Santos PH, Campanella OH, Koo H. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms. Front Cell Infect Microbiol. 2015;5:10. 10.3389/fcimb.2015.00010

4. Schmalzle SA. A classic and fatal case of Streptococcus mutans subacute bacterial endocarditis; A now potentially underappreciated disease. IDCases. 2020;19:e00701. 10.1016/j.idcr.2020.e00701

5. Nakano K, Ooshima T. Serotype classification of Streptococcus mutans and its detection outside the oral cavity. Future Microbiol. 2009;4(7):891–902. 10.2217/fmb.09.64

6. Hossain MS, Alam S, Nibir YM, Tusty TA, Bulbul SM, Islam M. Genotypic and phenotypic characterization of Streptococcus mutans strains isolated from patients with dental caries. Iran J Microbiol. 2021;13(4):449–57. 10.18502/ijm.v13i4.6968

7. Yin L, Zhu W, Chen D, Zhou Y, Lin H. Small noncoding RNA sRNA0426 is involved in regulating biofilm formation in Streptococcus mutans. Microbiologyopen. 2020;9(9):6. 10.1002/mbo3.1096

8. Greenwood D, Slack RC, Barer MR, Irving WL. Medical microbiology e-book: A guide to microbial infections: Pathogenesis, immunity, laboratory diagnosis and control. With STUDENT CONSULT Online Access. 12 ed. Elsevier Health Sciences; 2012.

9. Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D. Cutting edge: Recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol. 1999;163(1):1–5.

10. Song Y, Na HS, Park E, Park MH, Lee HA, Chung J. Streptococcus mutans activates the AIM2, NLRP3 and NLRC4 inflammasomes in human THP-1 macrophages. Int J Oral Sci. 2018;10(3):23. 10.1038/s41368-018-0024-z

11. Radman M, Golshiri A, Shamsizadeh A, Zainodini N, Bagheri V, Arababadi MK, et al. Toll-like receptor 4 plays significant roles during allergic rhinitis. Allergol Immunopathol (Madr). 2015;43(4):416–20. 10.1016/j.aller.2014.04.006

12. Sepehri Z, Kiani Z, Alavian SM, Arababadi MK, Kennedy D. The link between TLR7 signaling and hepatitis B virus infection. Life Sci. 2016;158:63–9. 10.1016/j.lfs.2016.06.026

13. Naghib M, Kariminik A, Kazemi Arababadi M. Tlr2, as a pathogen recognition receptor, plays critical roles in hepatitis B outcome. Viral Immunol. 2022;35(1):15–23. 10.1089/vim.2021.0141

14. Sameer AS, Nissar S. Toll-like receptors (TLRs): Structure, functions, signaling, and role of their polymorphisms in colorectal cancer susceptibility. Biomed Res Int. 2021;2021:1157023. 10.1155/2021/1157023

15. Ahmadishoar S, Kariminik A. Toll-like receptor 2 and its roles in immune responses against Legionella pneumophila. Life Sci. 2017;188:158–62. 10.1016/j.lfs.2017.09.009

16. De Nardo D. Toll-like receptors: Activation, signalling and transcriptional modulation. Cytokine. 2015;74(2):181–9. 10.1016/j.cyto.2015.02.025

17. Douzandeh-Mobarrez B, Kariminik A, Kazemi Arababadi M, Kheirkhah B. TLR9 in the human papilloma virus infections: Friend or foe? Viral Immunol. 2022; 5(7):457–64. 10.1089/vim.2021.0223

18. Douzandeh-Mobarrez B, Kariminik A, Arababadi MK, Kheirkhah B. Upregulation of Toll-like receptors 2, 5, 7, and 9 in the cervical epithelial cells of Iranian women infected with high-risk human papilloma virus. Clin Lab. 2022;68(11). 10.7754/Clin.Lab.2022.220120

19. Asadzadeh Manjili F, Yousefi-Ahmadipour A, Kazemi Arababadi M. The roles played by TLR4 in the pathogenesis of multiple sclerosis; A systematic review article. Immunol Lett. 2020;220:63–70. 10.1016/j.imlet.2020.02.004

20. Kawai T, Akira S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med. 2007;13(11):460–9. 10.1016/j.molmed.2007.09.002

21. Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014;5:461. 10.3389/fimmu.2014.00461

22. Andrukhov O. Toll-like receptors and dental mesenchymal stromal cells. Front Oral Health. 2021;2:648901. 10.3389/froh.2021.648901

23. Liu Y, Gao Y, Zhan X, Cui L, Xu S, Ma D, et al. TLR4 activation by lipopolysaccharide and Streptococcus mutans induces differential regulation of proliferation and migration in human dental pulp stem cells. J Endod. 2014;40(9):1375–81. 10.1016/j.joen.2014.03.015

24. Ramenzoni LL, Zuellig RA, Hussain A, Lehmann R, Heumann C, Attin T, et al. Bacterial supernatants elevate glucose-dependent insulin secretion in rat pancreatic INS-1 line and islet β-cells via PI3K/AKT signaling. Mol Cell Biochem. 2019;452(1–2):17–27. 10.1007/s11010-018-3408-7

25. Hong SW, Baik JE, Kang SS, Yun CH, Seo DG, Han SH. Lipoteichoic acid of Streptococcus mutans interacts with Toll-like receptor 2 through the lipid moiety for induction of inflammatory mediators in murine macrophages. Mol Immunol. 2014;57(2):284–91. 10.1016/j.molimm.2013.10.004

26. Nagata E, Oho T. Invasive Streptococcus mutans induces inflammatory cytokine production in human aortic endothelial cells via regulation of intracellular toll-like receptor 2 and nucleotide-binding oligomerization domain 2. Mol Oral Microbiol. 2017;32(2):131–41. 10.1111/omi.12159

27. Gómez-García AP, López-Vidal Y, Pinto-Cardoso S, Aguirre-García MM. Overexpression of proinflammatory cytokines in dental pulp tissue and distinct bacterial microbiota in carious teeth of Mexican Individuals. Front Cell Infect Microbiol. 2022;12:958722. 10.3389/fcimb.2022.958722

28. Hirao K, Yumoto H, Takahashi K, Mukai K, Nakanishi T, Matsuo T. Roles of TLR2, TLR4, NOD2, and NOD1 in pulp fibroblasts. J Dent Res. 2009;88(8):762–7. 10.1177/0022034509341779

29. Yoshioka H, Yoshimura A, Kaneko T, Golenbock DT, Hara Y. Analysis of the activity to induce toll-like receptor (TLR)2-and TLR4-mediated stimulation of supragingival plaque. J Periodontol. 2008;79(5):920–8. 10.1902/jop.2008.070516

30. Kesavalu L, Lucas AR, Verma RK, Liu L, Dai E, Sampson E, et al. Increased atherogenesis during Streptococcus mutans infection in ApoE-null mice. J Dent Res. 2012;91(3):255–60. 10.1177/0022034511435101

31. Hajishengallis G, Sharma A, Russell MW, Genco RJ. Interactions of oral pathogens with toll-like receptors: Possible role in atherosclerosis. Ann Periodontol. 2002;7(1):72–8. 10.1902/annals.2002.7.1.72

32. Horst OV, Tompkins KA, Coats SR, Braham PH, Darveau RP, Dale BA. TGF-beta1 Inhibits TLR-mediated odontoblast responses to oral bacteria. J Dent Res. 2009;88(4):333–8. 10.1177/0022034509334846

33. Funderburg NT, Jadlowsky JK, Lederman MM, Feng Z, Weinberg A, Sieg SF. The Toll-like receptor 1/2 agonists Pam(3) CSK(4) and human β-defensin-3 differentially induce interleukin-10 and nuclear factor-κB signalling patterns in human monocytes. Immunology. 2011;134(2):151–60. 10.1111/j.1365-2567.2011.03475.x

34. Bi Y, Xu Q, Su L, Xu J, Liu Z, Yang Y, et al. The combinations Chitosan-Pam(3)CSK(4) and Chitosan-Monophosphoryl lipid A: Promising immune-enhancing adjuvants for anticaries vaccine PAc. Infect Immun. 2019;87(12):e00651-19. 10.1128/IAI.00651-19

35. Salam MA, Katz J, Michalek SM. Role of Toll-like receptors in host responses to a virulence antigen of Streptococcus mutans expressed by a recombinant, attenuated Salmonella vector vaccine. Vaccine. 2010;28(31):4928–36. 10.1016/j.vaccine.2010.05.039

36. Xu Q, Katz J, Zhang P, Ashtekar AR, Gaddis DE, Fan M, et al. Contribution of a Streptococcus mutans antigen expressed by a Salmonella vector vaccine in dendritic cell activation. Infect Immun. 2011;79(9):3792–800. 10.1128/IAI.05338-11

37. Conti BJ, Santiago KB, Cardoso EO, Freire PP, Carvalho RF, Golim MA, et al. Propolis modulates miRNAs involved in TLR-4 pathway, NF-κB activation, cytokine production and in the bactericidal activity of human dendritic cells. J Pharm Pharmacol. 2016;68(12):1604–12. 10.1111/jphp.12628

38. Farges JC, Bellanger A, Ducret M, Aubert-Foucher E, Richard B, Alliot-Licht B, et al. Human odontoblast-like cells produce nitric oxide with antibacterial activity upon TLR2 activation. Front Physiol. 2015;6:185. 10.3389/fphys.2015.00185

39. Hong SW, Seo DG, Baik JE, Cho K, Yun CH, Han SH. Differential profiles of salivary proteins with affinity to Streptococcus mutans lipoteichoic acid in caries-free and caries-positive human subjects. Mol Oral Microbiol. 2014;29(5):208–18. 10.1111/omi.12057

40. Segawa T, Saeki A, Hasebe A, Arimoto T, Kataoka H, Yokoyama A, et al. Differences in recognition of wild-type and lipoprotein-deficient strains of oral Streptococci in vitro and in vivo. Pathog Dis. 2013;68(3):65–77. 10.1111/2049-632X.12049

41. Li H, Wang D. Streptococcus mutans wall-associated protein A promotes TLR4-induced dendritic cell maturation. Scand J Immunol. 2014;80(2):121–6. 10.1111/sji.12194

42. Kim JS, Kim KD, Na HS, Jeong SY, Park HR, Kim S, et al. Tumor necrosis factor-α and interleukin-1β expression pathway induced by Streptococcus mutans in macrophage cell line RAW 264.7. Mol Oral Microbiol. 2012;27(3):149–59. 10.1111/j.2041-1014.2012.00639.x

43. Sun Y, Shi W, Yang JY, Zhou DH, Chen YQ, Zhang Y, et al. Flagellin-PAc fusion protein is a high-efficacy anti-caries mucosal vaccine. J Dent Res. 2012;91(10):941–7. 10.1177/0022034512457684

44. Nakamura T, Iwabuchi Y, Hirayama S, Narisawa N, Takenaga F, Nakao R, et al. Roles of membrane vesicles from Streptococcus mutans for the induction of antibodies to glucosyltransferase in mucosal immunity. Microb Pathog. 2020;149:104260. 10.1016/j.micpath.2020.104260

45. Zeisel MB, Druet VA, Sibilia J, Klein JP, Quesniaux V, Wachsmann D. Cross talk between MyD88 and focal adhesion kinase pathways. J Immunol. 2005;174(11):7393–7. 10.4049/jimmunol.174.11.7393

46. Semaan N, Alsaleh G, Gottenberg JE, Wachsmann D, Sibilia J. Etk/BMX, a Btk family tyrosine kinase, and Mal contribute to the cross-talk between MyD88 and FAK pathways. J Immunol. 2008;180(5):3485–91. 10.4049/jimmunol.180.5.3485

47. Bhowmick R, Clark S, Bonventre JV, Leong JM, McCormick BA. Cytosolic phospholipase A(2)α promotes pulmonary inflammation and systemic dduring Streptococcus pneumoniae infection. Infect Immun. 2017;85(11):e00280–17. 10.1128/IAI.00280-17

48. Saeki A, Segawa T, Abe T, Sugiyama M, Arimoto T, Hara H, et al. Toll-like receptor 2-mediated modulation of growth and functions of regulatory T cells by oral streptococci. Mol Oral Microbiol. 2013;28(4):267–80. 10.1111/omi.12023

49. Park OJ, Kim AR, So YJ, Im J, Ji HJ, Ahn KB, et al. Induction of apoptotic cell death by oral streptococci in human periodontal ligament cells. Front Microbiol. 2021;12:738047. 10.3389/fmicb.2021.738047

50. Zhang T, Kurita-Ochiai T, Hashizume T, Du Y, Oguchi S, Yamamoto M. Aggregatibacter actinomycetemcomitans accelerates atherosclerosis with an increase in atherogenic factors in spontaneously hyperlipidemic mice. FEMS Immunol Med Microbiol. 2010;59(2):143–51. 10.1111/j.1574-695X.2010.00674.x

51. Taubman MA, Han X, Larosa KB, Socransky SS, Smith DJ. Periodontal bacterial DNA suppresses the immune response to mutans streptococcal glucosyltransferase. Infect Immun. 2007;75(8):4088–96. 10.1128/IAI.00623-07