Skip to main content
Log in

Characterization of Fe–Al intermetallic phases formed during hot-dip Al coating on carbon steel C45

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Sophisticated metallographic techniques helped reveal numerous new features developed at the inner interfaces of the hot-dip aluminized C45 carbon steel specimens. Multi-intermetallic phases composing of Fe2Al5, Fe4Al13, FeAl3, and FeAl were identified whereby it was also found that the FeAl3 phase did not inherent from Fe2Al5, rather it is the Fe4Al13 phase that exists at the outermost layer of Fe2Al5 toward the aluminum topcoat where the Fe2Al5 layer has the most prominent grain size. In addition, the Gibbs free energies are consistent and underline the preferential growth of the Fe2Al5 phase having ΔG° = − 197.6 kJ/mol at 700°C.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. M. B. Isiko, MSc. thesis, Norwegian University of Science and Technology, 2012

  2. W.J. Cheng, C.J. Wang, Surf. Coatings Technol. (2009). https://doi.org/10.1016/j.surfcoat.2009.09.061

    Article  Google Scholar 

  3. N. Takata, M. Nishimoto, S. Kobayashi, M. Takeyama, Intermetallics (2015). https://doi.org/10.1016/j.intermet.2015.07.011

    Article  Google Scholar 

  4. S. Chen, D. Yang, M. Zhang, J. Huang, X. Zhao, Metall. Mater. Trans. A (2016). https://doi.org/10.1007/s11661-016-3667-4

    Article  Google Scholar 

  5. R.W. Richards, R.D. Jones, P.D. Clements, H. Clarke, Int. Mater. Rev. (1994). https://doi.org/10.1179/imr.1994.39.5.191

    Article  Google Scholar 

  6. K. Bouché, F. Barbier, A. Coulet, Mater. Sci. Eng. A. (1998). https://doi.org/10.1016/s0921-5093(98)00573-5

    Article  Google Scholar 

  7. M. Yousaf, J. Iqbal, M. Ajmal, Mater. Charact. (2011). https://doi.org/10.1016/j.matchar.2011.03.004

    Article  Google Scholar 

  8. S. Gembal’ski, in New and Progressive Heat-Treatment Methods, 1967, no. 9, pp. 4–10.

  9. K. Kishore, S. Chhangani, M.J.N.V. Prasad, K. Bhanumurthy, Surf. Coatings Technol. (2020). https://doi.org/10.1016/j.surfcoat.2020.126783

    Article  Google Scholar 

  10. A. Van Alboom, B. Lemmens, B. Breitbach, E. De Grave, S. Cottenier, K. Verbeken, Surf. Coatings Technol. (2017). https://doi.org/10.1016/j.surfcoat.2017.05.091

    Article  Google Scholar 

  11. P.P. Dey, P. Modak, A. Ghosh, D. Chakrabarti, P.S. Banerjee, M. Ghosh, Results Mater. (2020). https://doi.org/10.1016/j.rinma.2020.100078

    Article  Google Scholar 

  12. P.P. Dey et al., J. Mater. Res. Technol. (2020). https://doi.org/10.1016/j.jmrt.2020.02.104

    Article  Google Scholar 

  13. B. Lemmens et al., Mater. Sci. Eng. A 2017, 385–391 (2018). https://doi.org/10.1016/j.msea.2017.10.094

    Article  CAS  Google Scholar 

  14. N. Takata, M. Nishimoto, S. Kobayashi, M. Takeyama, Intermetallics (2014). https://doi.org/10.1016/j.intermet.2014.06.003

    Article  Google Scholar 

  15. H. Azimaee, M. Sarfaraz, M. Mirjalili, K. Aminian, Surf. Coatings Technol. (2019). https://doi.org/10.1016/j.surfcoat.2018.10.035

    Article  Google Scholar 

  16. S. Kobayashi, T. Yakou, Mater. Sci. Eng. A (2002). https://doi.org/10.1016/S0921-5093(02)00053-9

    Article  Google Scholar 

  17. Z. Ding et al., Mater. Charact. (2018). https://doi.org/10.1016/j.matchar.2017.12.024

    Article  Google Scholar 

  18. Y. Tanaka, M. Kajihara, J. Mater. Sci. (2010). https://doi.org/10.1007/s10853-010-4633-y

    Article  Google Scholar 

  19. N. Zhang et al., Metall. Mater. Trans. A (2020). https://doi.org/10.1007/s11661-020-05754-9

    Article  Google Scholar 

  20. M. Mihalkovič, M. Widom, Phys. Rev. B (2012). https://doi.org/10.1103/PhysRevB.85.014113

    Article  Google Scholar 

  21. E. Pocheć, S. Jóźwiak, K. Karczewski, Z. Bojar, Thermochim. Acta (2012). https://doi.org/10.1016/j.tca.2012.06.015

    Article  Google Scholar 

  22. V.N. Yeremenko, Y.V. Natanzon, V.I. Dybkov, J. Mater. Sci. (1981). https://doi.org/10.1007/BF00540620

    Article  Google Scholar 

  23. P. Matysik, S. Józwiak, T. Czujko, Materials (Basel) (2015). https://doi.org/10.3390/ma8030914

    Article  Google Scholar 

  24. H.J. Muhammed, M. Benke, D. Koncz-Horváth, Z. Sályi, T.I. Török, Mater. Sci. Eng. 45, 136 (2020)

    Google Scholar 

  25. H.J. Muhammed, M. Benke, D. Koncz-Horváth, Z. Sályi, T.I. Török, Surf. Eng. Appl. Electrochem (2021). https://doi.org/10.3103/S1068375521040116

    Article  Google Scholar 

Download references

Acknowledgments

We do appreciate the contributions of every colleague helped accomplishing this work during laboratory experiments; Dr. Tibor Kulcsár, Mr. Tibor Ferenczi, Mr. Máté Czagány, Mrs. Anikó Márkus, and Mr. Ádám Végh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hawkar J. Muhammed.

Ethics declarations

Conflict of interest

No Conflict of Interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1013 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammed, H.J., Koncz-Horváth, D., Lassú, G. et al. Characterization of Fe–Al intermetallic phases formed during hot-dip Al coating on carbon steel C45. MRS Communications 12, 68–73 (2022). https://doi.org/10.1557/s43579-021-00142-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-021-00142-9

Keywords

Navigation