Skip to main content
Log in

Investigating mechanical and biological properties of additive manufactured Ti6Al4V lattice structures for orthopedic implants

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Titanium alloys are widely used for biomedical applications as porous lattice structures whose abilities can be altered via unit cell designs, pore size, and topology. In this study, Ti6Al4V octahedron, star, and dodecahedron cubic and plate lattice structures were designed as 0.20-mm strut diameter with different porosity values (83.06% for octahedron, 53.46% for star, and 63.29% for dodecahedron) and manufactured by laser powder bed fusion. Compression tests were conducted by ISO 13314. The elastic modulus for octahedron, star, and dodecahedron lattices were found 1.7 GPa, 8.6 GPa, and 6.7 GPa, respectively, and results were promising in terms of reducing stress shielding. Relation between relative density and mechanical response was investigated. Chitosan-substituted hydroxyapatite composite coating successfully deposited by electrophoretic deposition on surfaces for biological assessment. Coating increased bioactivity and reduced cell death, especially around implant samples. Chitosan addition ensured an antibacterial effect. Results revealed that mechanical properties and biological responses of structures were affected by the lattice design and pore size.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

All data and materials as well as a software application or custom code support their published claims and comply with field standards.

References

  1. V.S. Muthaiah, S. Indrakumar, S. Suwas, K. Chatterjee, Bioprinting. (2022). https://doi.org/10.1016/j.bprint.2021.e00180

    Article  Google Scholar 

  2. A.N. Aufa, M.Z. Hassan, Z.B. Ismail, J. Miner. Met. Mater. Eng. (2021). https://doi.org/10.31437/2414-2115.2021.07.5

    Article  Google Scholar 

  3. C. Yan, L. Hao, A. Hussein, Q. Wei, Y. Shi, Mater. Sci. Eng. C (2017). https://doi.org/10.1016/j.msec.2017.03.066

    Article  Google Scholar 

  4. A. Jam, A. du Plessis, C. Lora, S. Raghavendra, M. Pellizzari, M. Benedetti, Addit. Manuf. (2022). https://doi.org/10.1016/j.addma.2021.102556

    Article  Google Scholar 

  5. T. Maconachie, M. Leary, B. Lozanovski, X. Zhang, M. Qian, O. Faruque, M. Brandt, Mater. Des. (2019). https://doi.org/10.1016/j.matdes.2019.108137

    Article  Google Scholar 

  6. S.M. Ahmadi, G. Campoli, S.A. Yavari, S.B. Sajadi, R. Wauthlé, J. Schrooten, H. Weinans, A.A. Zadpoor, J. Mech. Behav. Biomed. Mater. (2014). https://doi.org/10.1016/j.jmbbm.2014.02.003

    Article  Google Scholar 

  7. E. Alabort, D. Barba, R.C. Reed, Scripta Mater. (2019). https://doi.org/10.1016/j.scriptamat.2019.01.022

    Article  Google Scholar 

  8. L. Riva, P.S. Ginestra, E. Ceretti, Int. J. Adv. Manuf. Technol. (2021). https://doi.org/10.1007/s00170-021-06631-4

    Article  Google Scholar 

  9. Z. Xiao, Y. Yang, R. Xiao, Y. Bai, C. Song, D. Wang, Mater. Des. (2018). https://doi.org/10.1016/j.matdes.2018.01.023

    Article  Google Scholar 

  10. Z. Jihong, Z. Han, W. Chuang, Z. Lu, Y. Shangqin, W. Zhang, Chin. J. Aeronaut. (2021). https://doi.org/10.1016/j.cja.2020.09.020

    Article  Google Scholar 

  11. M. Leary, M. Mazur, H. Williams, E. Yang, A. Alghamdi, B. Lozanovski, X. Zhang, D. Shidid, L. Farahbod-Sternahl, G. Witt et al., Mater. Des. (2018). https://doi.org/10.1016/j.matdes.2018.06.010

    Article  Google Scholar 

  12. S. Li, S. Yuan, J. Zhu, W. Zhang, Y. Tang, C. Wang, J. Li, Struct. Multidiscip. Optim. (2022). https://doi.org/10.1007/s00158-021-03153-1

    Article  Google Scholar 

  13. S. Drücker, M. Schulze, H. Ipsen, L. Bandegani, H. Hoch, M. Kluge, B. Fiedler, Int. J. Mech. Sci. (2021). https://doi.org/10.1016/j.ijmecsci.2020.105986

    Article  Google Scholar 

  14. B. Zhang, X. Pei, C. Zhou, Y. Fan, Q. Jiang, A. Ronca, U. D’Amora, Y. Chen, H. Li, Y. Sun et al., Mater. Des. (2018). https://doi.org/10.1016/j.matdes.2018.04.065

    Article  Google Scholar 

  15. H.D. Zheng, L.L. Liu, C.L. Deng, Z.F. Shi, C.Y. Ning, Rare Met. (2019). https://doi.org/10.1007/s12598-019-01231-4

    Article  Google Scholar 

  16. N. Wang, G.K. Meenashisundaram, D. Kandilya, J.Y.H. Fuh, S.T. Dheen, A.S.A. Kumar, Biomater. Adv. (2022). https://doi.org/10.1016/j.bioadv.2022.212829

    Article  Google Scholar 

  17. L.J. Gibson, M.F. Ashby, Cellular Solids Structures and Properties (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  18. N. Li, Y. Zhang, Q. Tang, H. Wang, D. He, Y. Yao, Y. Fan, Comput. Methods Biomech. Biomed. Eng. (2022). https://doi.org/10.1080/10255842.2022.2081505

    Article  Google Scholar 

  19. A. Fukuda, M. Takemoto, T. Saito, S. Fujibayashi, M. Neo, D.K. Pattanayak, T. Matsushita, K. Sasaki, N. Nishida, T. Kokubo et al., Acta Biomater. (2011). https://doi.org/10.1016/j.actbio.2011.01.037

    Article  Google Scholar 

  20. N. Taniguchi, S. Fujibayashi, M. Takemoto, K. Sasaki, B. Otsuki, T. Nakamura, T. Matsushita, T. Kokubo, S. Matsuda, Mater. Sci. Eng. C (2016). https://doi.org/10.1016/j.msec.2015.10.069

    Article  Google Scholar 

  21. F. Benazzo, L. Botta, M.F. Scaffino, L. Caliogna, M. Marullo, S. Fusi, G. Gastaldi, J. Biomed. Mater. Res. Part A (2014). https://doi.org/10.1002/jbm.a.34875

    Article  Google Scholar 

  22. D. Hara, Y. Nakashima, T. Sato, M. Hirata, M. Kanazawa, Y. Kohno, K. Yoshimoto, Y. Yoshihara, A. Nakamura, Y. Nakao et al., Mater. Sci. Eng. C (2016). https://doi.org/10.1016/j.msec.2015.11.025

    Article  Google Scholar 

  23. S. Colen, R. Harake, J. De Haan, M.A. Mulier, Acta Orthop. Belg. 79(1), 71–75 (2013)

    Google Scholar 

  24. A.A. Zadpoor, J. Mater. Chem. B (2019). https://doi.org/10.1039/C9TB00420C

    Article  Google Scholar 

  25. X.P. Tan, Y.J. Tan, C.S.L. Chow, S.B. Tor, W.Y. Yeong, Mater. Sci. Eng. C (2017). https://doi.org/10.1016/j.msec.2017.02.094

    Article  Google Scholar 

  26. J.P. Luo, Y.J. Huang, J.Y. Xu, J.F. Sun, M.S. Dargusch, C.H. Hou, L. Ren, R.Z. Wang, T. Ebel, M. Yan, Mater. Sci. Eng. C (2020). https://doi.org/10.1016/j.msec.2020.110903

    Article  Google Scholar 

  27. M. de Wild, R. Schumacher, K. Mayer, E. Schkommodau, D. Thoma, M. Bredell, A.K. Gujer, K.W. Grätz, F.E. Weber, Tissue Eng. Part A (2013). https://doi.org/10.1089/ten.tea.2012.0753

    Article  Google Scholar 

  28. S.L. Sing, J. An, W.Y. Yeong, F.E. Wiria, J. Orthop. Res. (2016). https://doi.org/10.1002/jor.23075

    Article  Google Scholar 

  29. L.W. Hunter, D. Brackett, N. Brierley, J. Yang, M.M. Attallah, Int. J. Adv. Manuf. Technol. (2020). https://doi.org/10.1007/s00170-020-04930-w

    Article  Google Scholar 

  30. J. Li, P. Zhou, S. Attarilar, H. Shi, Coatings (2021). https://doi.org/10.3390/coatings11060647

    Article  Google Scholar 

  31. A.R. Boyd, L. Rutledge, L.D. Randolph, B.J. Meenan, Mater. Sci. Eng. C (2015). https://doi.org/10.1016/j.msec.2014.10.046

    Article  Google Scholar 

  32. R.A. Ilyas, H.A. Aisyah, A.H. Nordin, N. Ngadi, M.Y.M. Zuhri, M.R.M. Asyraf, S.M. Sapuan, E.S. Zainudin, S. Sharma, H. Abral et al., Polymers (2022). https://doi.org/10.3390/polym14050874

    Article  Google Scholar 

  33. L. Kong, Y. Gao, W. Cao, Y. Gong, N. Zhao, X. Zhang, J. Biomed. Mater. Res. Part A (2005). https://doi.org/10.1002/jbm.a.30414

    Article  Google Scholar 

  34. J. Singh, S.S. Chatha, H. Singh, Prog. Biomater. (2022). https://doi.org/10.1007/s40204-022-00183-w

    Article  Google Scholar 

  35. E. Avcu, F.E. Baştan, H.Z. Abdullah, M.A.U. Rehman, Y.Y. Avcu, A.R. Boccaccini, Prog. Mater. Sci. (2019). https://doi.org/10.1016/j.pmatsci.2019.01.001

    Article  Google Scholar 

  36. D. Yu, J. Feng, H. You, S. Zhou, Y. Bai, J. He, H. Cao, Q. Che, J. Guo, Z. Su, Mar. Drugs (2022). https://doi.org/10.3390/md20010069

    Article  Google Scholar 

  37. E. Lokeshkumar, A. Saikiran, B. Ravisankar, L.V. Parfenova, E.V. Parfenov, R.Z. Valiev, N. Rameshbabu, Surf. Topogr. Metrol. Prop. (2022). https://doi.org/10.1088/2051-672X/ac5234

    Article  Google Scholar 

  38. K. Iwanami-Kadowaki, T. Uchikoshi, M. Uezono, M. Kikuchi, K. Moriyama, J. Biomed. Mater. Res. Part A (2021). https://doi.org/10.1002/jbm.a.37182

    Article  Google Scholar 

  39. A. Pawlik, M.A.U. Rehman, Q. Nawaz, F.E. Bastan, G.D. Sulka, A.R. Boccaccini, Electrochim. Acta (2019). https://doi.org/10.1016/j.electacta.2019.03.195

    Article  Google Scholar 

  40. B. Sağbaş, D. Gürkan, Int. J. 3D Print. Technol. Digital Ind. (2021). https://doi.org/10.46519/ij3dptdi.953315

    Article  Google Scholar 

  41. B. Sağbaş, D. Gürkan, J. Addit. Manuf. Technol. (2021). https://doi.org/10.18416/JAMTECH.2111594

    Article  Google Scholar 

  42. L.J. Gibson, MRS Bull. (1997). https://doi.org/10.1557/mrs2003.79

    Article  Google Scholar 

  43. W.C. Oliver, G.M. Pharr, J. Mater. Res. (1992). https://doi.org/10.1557/JMR.1992.1564

    Article  Google Scholar 

  44. K.M. Nsiempba, M. Wang, M. Vlasea, Appl. Sci. (2021). https://doi.org/10.3390/app11093845

    Article  Google Scholar 

  45. U.A. Dar, H.H. Mian, M. Abid, M.B. Nutkani, A. Jamil, M.Z. Sheikh, J. Mater. Eng. Perform. (2022). https://doi.org/10.1007/s11665-021-06419-3

    Article  Google Scholar 

  46. Z. Alomar, F.A. Concli, Adv. Eng. Mater. (2020). https://doi.org/10.1002/adem.202000611

    Article  Google Scholar 

  47. M.F. Ashby, Cellular Ceramics: Structure, Manufacturing, Properties and Applications (Wiley, New York, 2006)

    Google Scholar 

  48. G. Yu, Z. Li, S. Li, Q. Zhang, Y. Hua, H. Liu, X. Zhao, D.T. Dhaidhai, W. Li, X. Wang, Mater. Des. (2020). https://doi.org/10.1016/j.matdes.2020.108754

    Article  Google Scholar 

  49. X. Yan, Q. Li, S. Yin, Z. Chen, R. Jenkins, C. Chen, J. Wang, W. Ma, R. Bolot, R. Lupoi et al., J. Alloy Compd. (2019). https://doi.org/10.1016/j.jallcom.2018.12.220

    Article  Google Scholar 

  50. L. Bai, X. Zhou, X. Chen, L. Xin, J. Zhang, J. Yang, L. Kun, Y. Sun, Mech. Adv. Mater. Struct. (2021). https://doi.org/10.1080/15376494.2021.2009600

    Article  Google Scholar 

  51. N. Wang, G.K. Meenashisundaram, S. Chang, J.Y.H. Fuh, S.T. Dheen, A.S. Kumar, J. Mech. Behav. Biomed. Mater. (2022). https://doi.org/10.1016/j.jmbbm.2022.105151

    Article  Google Scholar 

  52. G. Campoli, M.S. Borleffs, S.A. Yavari, R. Wauthle, H. Weinans, A.A. Zadpoor, Mater. Des. (2013). https://doi.org/10.1016/j.matdes.2013.01.071

    Article  Google Scholar 

  53. C. Yan, L. Hao, A. Hussein, D. Raymont, Int. J. Mach. Tools Manuf (2012). https://doi.org/10.1016/j.ijmachtools.2012.06.002

    Article  Google Scholar 

  54. H.C. Hamaker, Trans. Farad. Soc. 35, 279–287 (1940)

    Article  Google Scholar 

  55. D. Juliadmi, D.H. Tjong, M. Manjas, IOP Conf. Ser. (2019). https://doi.org/10.1088/1757-899X/547/1/012005

    Article  Google Scholar 

  56. Y. Castro, B. Ferrari, R. Moreno, A. Duran, J. Sol-Gel. Sci. Technol. (2003). https://doi.org/10.1023/A:1020750222322

    Article  Google Scholar 

  57. E.G. Kalinina, D.S. Rusakova, E.Y. Pikalova, Chimica Techno Acta. (2022). https://doi.org/10.15826/chimtech.2022.9.2.07

    Article  Google Scholar 

  58. L. Besra, M. Liu, Prog. Mater Sci. (2007). https://doi.org/10.1016/j.pmatsci.2006.07.001

    Article  Google Scholar 

  59. R. Kumari, K.B. Yadav, S. Barole, K. Archana, L.D. Besra, Adv. Mater. Process. Technol. (2021). https://doi.org/10.1080/2374068X.2021.1959106

    Article  Google Scholar 

  60. Y. Huang, X. Zhang, H. Mao, T. Li, R. Zhao, Y. Yan, X. Pang, RSC Adv. (2015). https://doi.org/10.1039/C4RA12118J

    Article  Google Scholar 

  61. F.B. Coulter, R.E. Levey, S.T. Robinson, E.B. Dolan, S. Deotti, M. Monaghan, P. Dockery, B.S. Coulter, L.P. Burke, A.J. Lowery et al., Adv. Healthc. Mater. (2021). https://doi.org/10.1002/adhm.202100229

    Article  Google Scholar 

  62. H. Sorg, D.J. Tilkorn, J. Hauser, A. Ring, Bioengineering (2022). https://doi.org/10.3390/bioengineering9070298

    Article  Google Scholar 

  63. Z.-Y. Qiu, Y. Cui, X.-M. Wang, Natural bone tissue and its biomimetic. in: Mineralized Collagen Bone Graft Substitutes (Woodhead Publishing Series in Biomaterials, Woodhead Publishing, 2019), pp. 1–22

  64. A.A. Al-Munajjed, M. Hien, R. Kujat, J.P. Gleeson, J. Hammer, J. Mater. Sci. (2008). https://doi.org/10.1007/s10856-008-3422-5

    Article  Google Scholar 

  65. S.T. Chen, H.W. Chien, C.Y. Cheng, H.M. Huang, T.Y. Song, Y.C. Chen, C.H. Wu, Y.H. Hsueh, Y.H. Wang, S.F. Ou, Prog. Org. Coat. (2021). https://doi.org/10.1016/j.porgcoat.2021.106385

    Article  Google Scholar 

  66. L.V. Oliveira, G.R. da Silva, G.L. Souza, T.E.A. Magalhães, G.L.R. Barbosa, A.P. Turrioni, C.C.G. Moura, Int. Endod. J. (2020). https://doi.org/10.1111/iej.13308

    Article  Google Scholar 

  67. International Organization for Standardization, ISO 13314 Mechanical testing of metals, ductility testing, compression test for porous and cellular metals. (2011)

  68. EOS Gmb, EOS Titanium Ti64 data sheet. http://www.eos.info/. Accessed 7 July 2022

Download references

Acknowledgments

The authors would like to thank Assoc. Prof. Dr. Cem Bülent Üstündağ for his support of HA synthesis and Prof. Dr. Elif Damla Arısan for her support of cell culture tests.

Funding

This work was supported by Yildiz Technical University Scientific Research Projects Coordination Unit. Project Number: FDK-2021-4135.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binnur Sagbas.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

Not Related.

Consent for publication

By submitting the manuscript, the authors understand that the material presented in this manuscript has not been published before, nor has it been submitted for publication to another journal. The corresponding author attests that this study has been approved by all the co-authors concerned.

Research involving human participants and/or animals

The authors confirmed that there are no human participants or animals in the present work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gürkan, D., Sagbas, B. & Dalbayrak, B. Investigating mechanical and biological properties of additive manufactured Ti6Al4V lattice structures for orthopedic implants. Journal of Materials Research 38, 507–518 (2023). https://doi.org/10.1557/s43578-022-00837-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00837-2

Keywords

Navigation