Skip to main content
Log in

Phase transformation of Ag–Cu alloy nanoparticle embedded in Ni matrix

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the present study, various (Ag–Cu) nanoalloy particles are embedded in the Ni matrix and synthesized by rapid solidification, namely Ni–3.8 at.% (Ag77–Cu23), Ni–4 at.% (Ag60–Cu40), and Ni–4.8 at.% (Ag24–Cu76), to understand the effect of matrix on nanoparticles. The detailed TEM study reveals that Ni–3.8 at.% (Ag77–Cu23) and Ni–4 at.% (Ag60–Cu40) show a single phase of (Ag), while Ni–4.8 at.% (Ag24–Cu76) indicates the presence of bi-phasic (Cu)–(Ag) alloy nanoparticles. Furthermore, thermal cycling was carried out using DSC to study the influence of solid-solution properties. Unlike Ni–3.8 at.% (Ag77–Cu23) and Ni–4 at.% (Ag60–Cu40), Ni–4.8 at.% (Ag24–Cu76) shows no changes while melting and cooling. Further, in situ TEM investigation of Ni–4.8 at.% (Ag24–Cu76) nanoparticle reveals that the bi-phasic nanoparticles undergo fully solid-state transformation to single-phase (Ag) nanoparticles prior to melting while heating. Theoretical studies on the phase stability of Ag–Cu–Ni at the nanoscale were undertaken to validate the experimental results, offering insight into the phase change of these solid-solution nanoparticles in the Ni matrix.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

The data will be available on reasonable request to the corresponding author.

References

  1. F. Calvo, Thermodynamics of nanoalloys. Phys. Chem. Chem. Phys. 17, 27922–27939 (2015). https://doi.org/10.1039/C5CP00274E

    Article  CAS  Google Scholar 

  2. F. Calvo, Nanoalloys: From Fundamentals to Emergent Applications (Elsevier, Amsterdam, 2013)

    Google Scholar 

  3. K. Tiwari, M. Manolata Devi, K. Biswas, K. Chattopadhyay, Phase transformation behavior in nanoalloys. Prog. Mater. Sci. 121, 100794 (2021). https://doi.org/10.1016/j.pmatsci.2021.100794

    Article  CAS  Google Scholar 

  4. M.M. Devi, K. Tiwari, K. Biswas, Size-dependent melting behavior of Pb-17.5 At. Pct Sb-free biphasic alloy nanoparticles. Metall. Mater. Trans. A 50, 3959–3972 (2019). https://doi.org/10.1007/s11661-019-05275-0

    Article  CAS  Google Scholar 

  5. Q.S. Mei, K. Lu, Melting and superheating of crystalline solids: from bulk to nanocrystals. Prog. Mater. Sci. 52, 1175–1262 (2007). https://doi.org/10.1016/j.pmatsci.2007.01.001

    Article  CAS  Google Scholar 

  6. K. Chattopadhyay, R. Goswami, Melting and superheating of metals and alloys. Prog. Mater. Sci. 42, 287 (1997). https://doi.org/10.1016/S0079-6425(97)00030-3

    Article  CAS  Google Scholar 

  7. J. Weissmuller, P. Bunzel, G. Wilde, Two-phase equilibrium in small alloy particles. Scr. Mater. 51, 813–818 (2004). https://doi.org/10.1016/j.scriptamat.2004.06.025

    Article  CAS  Google Scholar 

  8. P. Bunzel, G. Wilde, H. Rösner, J. Weissmüller, Two-phase equilibrium in binary alloy nano particles, in Solidification and Crystallization, ed. by D.M. Herlach. 157–165 (2004). https://doi.org/10.1002/3527603506.ch18

  9. P.Y. Khan, K. Biswas, Melting and solidification behaviour of Bi–Pb multiphase alloy nanoparticles embedded in aluminum matrix. J. Nanosci. Nanotechnol. 15, 309–316 (2015). https://doi.org/10.1166/jnn.2015.9221

    Article  CAS  Google Scholar 

  10. K. Chattopadhyay, Behaviour of embedded metals and alloys at small sizes. Trans. Indian Inst. Met. 58, 1057–677 (2005)

    CAS  Google Scholar 

  11. V. Bhattacharya, K. Chattopadhyay, Phase transformation in nanoscale indium-tin alloy particles embedded in metallic matrices. J. Nanosci. Nanotechnol. 7, 1736–1743 (2007). https://doi.org/10.1166/jnn.2007.708

    Article  CAS  Google Scholar 

  12. K. Tiwari, M. Paliwal, M. Verma, K. Biswas, Solidification behavior of nanoscaled triphasic bismuth-indium-tin alloy particles embedded in Al–Cu–Fe quasicrystalline matrix. J. Alloys Compd. 867, 159011 (2021). https://doi.org/10.1016/j.jallcom.2021.159011

    Article  CAS  Google Scholar 

  13. K. Tiwari, K. Biswas, Precision in compositional determination of multiphase nanoscale structures using the aberration-corrected advance electron microscope: challenges and opportunities. Microsc. Microanal. 26, 988 (2020). https://doi.org/10.1017/S143192762001658X

    Article  Google Scholar 

  14. D. Turnbull, Formation of crystal nuclei in liquid metals. J. Appl. Phys. 21, 1022–1028 (1950). https://doi.org/10.1063/1.1699435

    Article  CAS  Google Scholar 

  15. D. Turnbull, R.E. Cech, Microscopic observation of the solidification of small metal droplets. J. Appl. Phys. 21, 804 (1950). https://doi.org/10.1063/1.1699763

    Article  Google Scholar 

  16. K. Tiwari, K. Biswas, M. Palliwal, B. Majumdar, H.J. Fecht, Melting behaviour of triphasic Bi44In32Sn23 alloy nanoparticle embedded in icosahedral quasicrystalline matrix. J. Alloys Compd. 834, 155160 (2020). https://doi.org/10.1016/j.jallcom.2020.155160

    Article  CAS  Google Scholar 

  17. P.Y. Khan, V. Bhattacharya, K. Biswas, K. Chattopadhyay, Melting and solidification behavior of Pb–Sn embedded alloy nanoparticles. J. Nanopart. Res. 15, 2049 (2013). https://doi.org/10.1007/s11051-013-2049-8

    Article  CAS  Google Scholar 

  18. P.Y. Khan, K. Biswas, The effect of matrix on melting and solidification behaviours of embedded Pb–Sn alloy nanoparticles. Philos. Mag. 94, 2031–2045 (2014). https://doi.org/10.1080/14786435.2014.904966

    Article  CAS  Google Scholar 

  19. M. Peterlechner, A. Moros, H. Rösner, S. Lazar, P. Ericus, G. Wilde, Melting and solidification of lead nanoparticles embedded in aluminium-gallium matrices. Acta Mater. 128, 284 (2017). https://doi.org/10.1016/j.actamat.2017.01.062

    Article  CAS  Google Scholar 

  20. K. Biswas, G. Phanikumar, D. Holland-Moritz, D.M. Herlach, K. Chattopadhyay, Disorder trapping and grain refinement during solidification of undercooled Fe–18 at% Ge melts. Philos. Mag. 87, 3817 (2007). https://doi.org/10.1080/14786430701420549

    Article  CAS  Google Scholar 

  21. R. Ferrando, J. Jellinek, R.L. Johnston, Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845 (2008). https://doi.org/10.1021/cr040090g

    Article  CAS  Google Scholar 

  22. A. Sharma, S. Yadav, K. Biswas, B. Basu, High-entropy alloys and metallic nanocomposites: processing challenges, microstructure development and property enhancement. Mater. Sci. Eng. R 131, 1–42 (2018). https://doi.org/10.1016/j.mser.2018.04.003

    Article  Google Scholar 

  23. K.S. Moon, Y. Li, J. Xu, C. Wong, Lead-free interconnect technique by using variable frequency microwave. J. Electron. Mater. 34, 1081–1088 (2005). https://doi.org/10.1007/s11664-005-0099-0

    Article  CAS  Google Scholar 

  24. T. Yamauchi, Y. Tsukahara, T. Sakata, H. Mori, T. Yanagida, T. Kawai, Y. Wada, Magnetic Cu–Ni (core–shell) nanoparticles in a one-pot reaction under microwave irradiation. Nanoscale 2, 515 (2010). https://doi.org/10.1039/b9nr00302a

    Article  CAS  Google Scholar 

  25. Z. Zhang, T.M. Nenoff, K. Leung, S. Ferreira, J. Huang, D. Berry, P. Provencio, R. Stumpf, Room-temperature synthesis of Ag−Ni and Pd−Ni alloy nanoparticles. J. Phys. Chem. 114, 14309 (2010). https://doi.org/10.1021/jp911947v

    Article  CAS  Google Scholar 

  26. S. Dev, P. Basak, I. Singh, R. Dubey, O. Mohanty, A copper-base brazing alloy for electronics industries. J. Mater. Sci. 27, 6646 (1992). https://doi.org/10.1007/BF01165949

    Article  CAS  Google Scholar 

  27. H.T. Luo, S.-W. Chen, Phase equilibria of the ternary Ag–Cu–Ni system and the interfacial reactions in the Ag–Cu/Ni couples. J. Mater. Sci. 31, 5059 (1996). https://doi.org/10.1007/BF00355906

    Article  CAS  Google Scholar 

  28. T. Massalski, Phase diagrams ASM metals handbook. ASM Met. Handb. 3, 206 (1992)

    Google Scholar 

  29. X.J. Liu, F. Gao, C.P. Wang, K. Ishida, Thermodynamic assessments of the Ag–Ni binary and Ag–Cu–Ni ternary systems. J. Electron. Mater. 37, 210–217 (2008). https://doi.org/10.1007/s11664-007-0315-1

    Article  CAS  Google Scholar 

  30. C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A.D. Pelton, S. Petersen, FactSage thermochemical software and databases. Calphad 26, 189 (2002). https://doi.org/10.1016/S0364-5916(02)00035-4

    Article  CAS  Google Scholar 

  31. C.W. Bale, E. Bélisle, P. Chartrand, S. Decterov, G. Eriksson, A. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, FactSage thermochemical software and databases. Calphad 100, 35–53 (2009). https://doi.org/10.1016/j.calphad.2008.09.009

    Article  CAS  Google Scholar 

  32. O. Redlich, A.T. Kister, Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948). https://doi.org/10.1021/ie50458a036

    Article  Google Scholar 

  33. A.T. Dinsdale, SGTE data for pure elements. Calphad 15, 317–425 (1991). https://doi.org/10.1016/0364-5916(91)90030-N

    Article  CAS  Google Scholar 

  34. W.H. Qi, M.P. Wang, Q.H. Liu, Shape factor of nonspherical nanoparticles. J. Mater. Sci. 40, 2737 (2005). https://doi.org/10.1007/s10853-005-2119-0

    Article  CAS  Google Scholar 

  35. J. Av Butler, J.P. Kendall, The thermodynamics of the surfaces of solutions. Proc. R. Soc. Lond. Ser. A 135, 348 (1932). https://doi.org/10.1098/rspa.1932.0040

    Article  Google Scholar 

  36. A. Roshanghias, J. Vrestal, A. Yakymovych, K.W. Richter, H. Ipser, Sn–Ag–Cu nanosolders: melting behavior and phase diagram prediction in the Sn-rich corner of the ternary system. Calphad 49, 101–109 (2015). https://doi.org/10.1016/j.calphad.2015.04.003

    Article  CAS  Google Scholar 

  37. A.S. Shirinyan, Two-phase equilibrium states in individual Cu–Ni nanoparticles: size, depletion and hysteresis effects. Beilstein J. Nanotechnol. 6, 1811 (2015). https://doi.org/10.3762/bjnano.6.185

    Article  CAS  Google Scholar 

  38. J. Sopousek, J. Vrestal, J. Pinkas, P. Broz, J. Bursik, A. Styskalik, D. Skoda, O. Zobac, J. Lee, Cu–Ni nanoalloy phase diagram—prediction and experiment. Calphad 45, 33–39 (2014). https://doi.org/10.1016/j.calphad.2013.11.004

    Article  CAS  Google Scholar 

  39. R. Sonkusare, P. Divya Janani, N.P. Gurao, S. Sarkar, S. Sen, K.G. Pradeep, K. Biswas, Phase equilibria in equiatomic CoCuFeMnNi high entropy alloy. Mater. Chem. Phys. 210, 269 (2018). https://doi.org/10.1016/j.matchemphys.2017.08.051

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishanu Biwas.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest regarding the current research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 688 kb)

Supplementary file2 (MP4 5184 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, K., Paliwal, M. & Biwas, K. Phase transformation of Ag–Cu alloy nanoparticle embedded in Ni matrix. Journal of Materials Research 37, 4124–4139 (2022). https://doi.org/10.1557/s43578-022-00777-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00777-x

Keywords

Navigation