Skip to main content

Advertisement

Log in

An ultrasensitive electrochemical DNA biosensor based on the highly conductive Nd–Sb-co-doped SnO2@Pt nanocomposite for the rapid detection of HIV-DNA

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Human immune deficiency virus (HIV) continues to cause havoc around the globe and has a significant impact on public safety. Therefore, a convenient method for the rapid detection of HIV-DNA is the key to the treatment and prevention of this kind of disease. In this work, we constructed an ultrasensitive electrochemical biosensor for the rapid detection of HIV-DNA based on Nd–Sb-co-doped SnO2@Pt electrode material. The doping of Sb and Nd increased oxygen vacancies of the SnO2 crystal lattice, which greatly improved the conductivity of the material. Meanwhile, the spherical nanoflower structure of Nd–Sb-co-doped SnO2 not only provided abundant attachment sites for Pt nanoparticles (Pt NPs) but also avoided the aggregation of DNA strands. Hence, the biosensor exhibited high sensitivity, good stability, outstanding selectivity, wide detection ranges (from 1.0 × 10−13 to 1.0 × 10−7 M), as well as a low limit of detection (0.099 pM) for HIV-DNA.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Scheme 1

Similar content being viewed by others

Data availability

The authors declare that all the data supporting the findings of this study are available within the article and its supplementary information files.

References

  1. Y. Wang, W. Sun, Y. Li, X. Zhuang, C. Tian, F. Luan, X. Fu, Microchem. J. 167, 106332 (2021). https://doi.org/10.1016/j.microc.2021.106332

    Article  CAS  Google Scholar 

  2. https://www.unaids.org/en/resources/documents/2021/2021-global-aids-update

  3. P. Valentini, P.P. Pompa, Angew. Chem. Int. Ed. 55, 2157–2160 (2016). https://doi.org/10.1002/anie.201511010

    Article  CAS  Google Scholar 

  4. S.C. Manenzhe, S.P. Ngwenya, S.L. Shangase, Oral Dis. 26, 161–164 (2020). https://doi.org/10.1111/odi.13399

    Article  Google Scholar 

  5. L. He, R. Huang, P. Xiao, Y. Liu, L. Jin, H. Liu, S. Li, Y. Deng, Z. Chen, Z. Li, N. He, Chin. Chem. Lett. 32, 1593–1602 (2021). https://doi.org/10.1016/j.cclet.2020.12.054

    Article  CAS  Google Scholar 

  6. V.S.P.K. Sankara Aditya Jayanthi, A.B. Das, U. Saxena, Biosens. Bioelectron. 91, 15–23 (2017). https://doi.org/10.1016/j.bios.2016.12.014

    Article  CAS  Google Scholar 

  7. N. Feng, J. Zhang, W. Li, J. Electrochem. Soc. 166, B1364–B1369 (2019). https://doi.org/10.1149/2.1321914jes

    Article  CAS  Google Scholar 

  8. G. Wu, H. Zheng, Y. Xing, C. Wang, X. Yuan, X. Zhu, Chemosphere 286, 131602 (2022). https://doi.org/10.1016/j.chemosphere.2021.131602

    Article  CAS  Google Scholar 

  9. H. Zhao, Z. Niu, K. Chen, L. Chen, Z. Wang, M. Lan, J. Shi, W. Huang, Microchem. J. 171, 106783 (2021). https://doi.org/10.1016/j.microc.2021.106783

    Article  CAS  Google Scholar 

  10. Y. Ma, N. Liu, Z. Xu, J. Wang, X. Luo, Microchem. J. 161, 105780 (2021). https://doi.org/10.1016/j.microc.2020.105780

    Article  CAS  Google Scholar 

  11. L. Sha, Y. Han, M. Wang, S. Wu, J. Yang, G. Li, J. Mater. Chem. B 9, 5451–5455 (2021). https://doi.org/10.1039/D1TB01126J

    Article  CAS  Google Scholar 

  12. N. Tripathy, D.-H. Kim, Nano Converg. 5, 27 (2018). https://doi.org/10.1186/s40580-018-0159-9

    Article  CAS  Google Scholar 

  13. J. Tao, Z. Liu, Z. Zhu, Y. Zhang, H. Wang, P. Pang, C. Yang, W. Yang, Talanta 241, 123272 (2022). https://doi.org/10.1016/j.talanta.2022.123272

    Article  CAS  Google Scholar 

  14. H. Karimi-Maleh, A. Khataee, F. Karimi, M. Baghayeri, L. Fu, J. Rouhi, C. Karaman, O. Karaman, R. Boukherroub, Chemosphere 291, 132928 (2022). https://doi.org/10.1016/j.chemosphere.2021.132928

    Article  CAS  Google Scholar 

  15. C. Sun, J. Yang, M. Xu, Y. Cui, W. Ren, J. Zhang, H. Zhao, B. Liang, Chem. Eng. J. 427, 131564 (2022). https://doi.org/10.1016/j.cej.2021.131564

    Article  CAS  Google Scholar 

  16. P. Wu, Y. Li, S. Xiao, J. Chen, J. Tang, D. Chen, X. Zhang, J. Hazard. Mater. 422, 126882 (2022). https://doi.org/10.1016/j.jhazmat.2021.126882

    Article  CAS  Google Scholar 

  17. E. Pargoletti, U.H. Hossain, I. Di Bernardo, H. Chen, T. Tran-Phu, G.L. Chiarello, J. Lipton-Duffin, V. Pifferi, A. Tricoli, G. Cappelletti, ACS Appl. Mater. Interfaces 12, 39549–39560 (2020). https://doi.org/10.1021/acsami.0c09178

    Article  CAS  Google Scholar 

  18. M.T. Uddin, M.E. Hoque, M. Chandra Bhoumick, RSC Adv. 10, 23554–23565 (2020). https://doi.org/10.1039/D0RA03233F

    Article  CAS  Google Scholar 

  19. R. Zhang, K. Li, S. Ren, J. Chen, X. Feng, Y. Jiang, Z. He, L. Dai, L. Wang, Appl. Surf. Sci. 526, 146685 (2020). https://doi.org/10.1016/j.apsusc.2020.146685

    Article  CAS  Google Scholar 

  20. Y. Xie, J. Chem. Res. 45, 738–746 (2021). https://doi.org/10.1177/1747519821994252

    Article  CAS  Google Scholar 

  21. S. Jana, S. Konar, B.C. Mitra, A. Mondal, S. Mukhopadhyay, Mater. Res. Bull. 141, 111351 (2021). https://doi.org/10.1016/j.materresbull.2021.111351

    Article  CAS  Google Scholar 

  22. K.D. Arun Kumar, S. Valanarasu, A. Kathalingam, K. Jeyadheepan, Mater. Res. Bull. 101, 264–271 (2018). https://doi.org/10.1016/j.materresbull.2018.01.050

    Article  CAS  Google Scholar 

  23. B. Bissig, T. Jäger, L. Ding, A.N. Tiwari, Y. Romanyuk, APL Mater. 3(6), 062802 (2015). https://doi.org/10.1063/1.4916586

  24. E. Skotadis, K. Voutyras, M. Chatzipetrou, G. Tsekenis, L. Patsiouras, L. Madianos, S. Chatzandroulis, I. Zergioti, D. Tsoukalas, Biosens. Bioelectron. 81, 388–394 (2016). https://doi.org/10.1016/j.bios.2016.03.028

    Article  CAS  Google Scholar 

  25. D. Wu, H. Fan, Y. Li, Y. Zhang, H. Liang, Q. Wei, Biosens. Bioelectron. 46, 91–96 (2013). https://doi.org/10.1016/j.bios.2013.02.014

    Article  CAS  Google Scholar 

  26. X.C. Zhou, L.Q. Huang, S.F.Y. Li, Biosens. Bioelectron. 16, 85–95 (2001). https://doi.org/10.1016/S0956-5663(00)00136-6

    Article  CAS  Google Scholar 

  27. G. Qin, F. Gao, Q. Jiang, Y. Li, Y. Liu, L. Luo, K. Zhao, H. Zhao, Chem. Chem. Phys. 18, 5537–5549 (2016). https://doi.org/10.1039/C5CP07174G

    Article  CAS  Google Scholar 

  28. S.-G. Lee, S.-B. Han, W.-J. Lee, K.-W. Park, Catalysts 10, 866 (2020). https://www.mdpi.com/2073-4344/10/8/866

    Article  CAS  Google Scholar 

  29. F. Yang, F. Yang, T.-T. Tu, N. Liao, Y.-Q. Chai, R. Yuan, Y. Zhuo, Biosens. Bioelectron. 173, 112820 (2021). https://doi.org/10.1016/j.bios.2020.112820

    Article  CAS  Google Scholar 

  30. Y. Liu, Y. Jiao, Z. Zhang, F. Qu, A. Umar, X. Wu, ACS Appl. Mater. Interfaces 6, 2174–2184 (2014). https://doi.org/10.1021/am405301v

    Article  CAS  Google Scholar 

  31. A. Ayeshamariam, S. Ramalingam, M. Bououdina, M. Jayachandran, Spectrochim. Acta A 118, 1135–1143 (2014). https://doi.org/10.1016/j.saa.2013.09.030

    Article  CAS  Google Scholar 

  32. L. Zhang, J. Shi, Y. Huang, H. Xu, K. Xu, P.K. Chu, F. Ma, ACS Appl. Mater. Interfaces 11, 12958–12967 (2019). https://doi.org/10.1021/acsami.8b22533

    Article  CAS  Google Scholar 

  33. C. Terrier, J.P. Chatelon, J.A. Roger, R. Berjoan, C. Dubois, J. Sol-Gel Sci. Technol. 10, 75–81 (1997). https://doi.org/10.1023/A:1018388306674

    Article  CAS  Google Scholar 

  34. M. Sun, J. Liu, B. Dong, Curr. Appl. Phys. 20(3), 462–469 (2020). https://doi.org/10.1016/j.cap.2020.01.009

    Article  Google Scholar 

  35. Z. Sun, H. Zhang, X. Wei, R. Du, X. Hu, J. Electrochem. Soc. 162, H590–H596 (2015). https://doi.org/10.1149/2.0221509jes

    Article  CAS  Google Scholar 

  36. T. Palanisamy, A. Alazmi, N.M. Batra, P.M.F.J. Costa, Mater. Sci. Eng. B 272, 115370 (2021). https://doi.org/10.1016/j.mseb.2021.115370

    Article  CAS  Google Scholar 

  37. X. Bai, X. Li, S. Li, E. Ma, Y. Dai, L. Wang, L. Li, Q. Qu, J. Mater. Sci. 57(22), 10328–10342 (2022). https://doi.org/10.1007/s10853-022-07314-5

    Article  CAS  Google Scholar 

  38. X. Qian, S. Tan, Z. Li, Q. Qu, L. Li, L. Yang, Biosens. Bioelectron. 153, 112051 (2020). https://doi.org/10.1016/j.bios.2020.112051

    Article  CAS  Google Scholar 

  39. X. Deng, C. Wang, Y. Gao, J. Li, W. Wen, X. Zhang, S. Wang, Biosens. Bioelectron. 105, 211–217 (2018). https://doi.org/10.1016/j.bios.2018.01.039

    Article  Google Scholar 

  40. B. Nagar, M. Balsells, A. de la Escosura-Muñiz, P. Gomez-Romero, A. Merkoçi, Biosens. Bioelectron. 129, 238–244 (2019). https://doi.org/10.1016/j.bios.2018.09.073

    Article  CAS  Google Scholar 

  41. C. Yuan, J. Fang, Q. Duan, Q. Yan, J. Guo, T. Yuan, G. Yi, Biosens. Bioelectron. 133, 243–249 (2019). https://doi.org/10.1016/j.bios.2019.03.015

    Article  CAS  Google Scholar 

  42. K. Wang, D. Fan, Y. Liu, S. Dong, Biosens. Bioelectron. 87, 116–121 (2017). https://doi.org/10.1016/j.bios.2016.08.017

    Article  CAS  Google Scholar 

  43. J. Wang, Z. Liu, C. Hu, S. Hu, Anal. Chem. 87, 9368–9375 (2015). https://doi.org/10.1021/acs.analchem.5b02148

    Article  CAS  Google Scholar 

  44. J. Yoo, H. Jeong, S.K. Park, S. Park, J.S. Lee, Interdigitated electrode biosensor based on plasma-deposited TiO2 nanoparticles for detecting DNA. Biosensors 11(7), 212 (2021). https://doi.org/10.3390/bios11070212

    Article  CAS  Google Scholar 

  45. M. Shamsipur, L. Samandari, L. Farzin, A. Besharati-Seidani, Microchem. J. 160, 105714 (2021). https://doi.org/10.1016/j.microc.2020.105714

    Article  CAS  Google Scholar 

  46. S. Man, H. Bao, K. Xu, H. Yang, Q. Sun, L. Xu, W. Yang, Z. Mo, X. Li, Chem. Eng. J. 417, 129266 (2021). https://doi.org/10.1016/j.cej.2021.129266

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Analysis and Measurement Center of Yunnan University for the sample testing service.

Funding

This work was supported by the National Natural Science Foundation of China (Grant Numbers 52061041, 51661033, 31660538, 51361028, and 51161025) and the 13th Graduate Student Scientific 336 Research Innovation Program of Yunnan University (Grant Number 2021Y384). This work was also supported by Workstation of Academician Chen Jing of Yunnan Province (No. 202105AF150012) and Free exploration fund for academician (No. 202205AA160007).

Author information

Authors and Affiliations

Authors

Contributions

EM contributed to writing of the original draft, experiment, investigation, and data curation. CL contributed to data management and investigation. XB contributed to investigation and data curation. PF contributed to investigation and data curation. GL contributed to investigation and data curation. KC contributed to investigation and data curation. LL contributed to supervision and resources. QQ contributed to conceptualization, supervision, and writing, reviewing, & editing of the manuscript.

Corresponding authors

Correspondence to Lei Li or Qing Qu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1626 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, E., Liu, C., Bai, X. et al. An ultrasensitive electrochemical DNA biosensor based on the highly conductive Nd–Sb-co-doped SnO2@Pt nanocomposite for the rapid detection of HIV-DNA. Journal of Materials Research 37, 3617–3628 (2022). https://doi.org/10.1557/s43578-022-00731-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00731-x

Keywords

Navigation