Skip to main content
Log in

The effect of graphite addition on thermal conductivity, microstructure, and electrochemical impedance spectroscopy of AlN ceramics

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Graphite/aluminum nitride (AlN) multiphase ceramics are pressureless sintered under 1850 °C using Dy2O3 and CaF2 as sintering additives. The effects of added graphite on microstructure, thermal conductivity, and electrochemical impedance spectroscopy of AlN ceramics were investigated. It was found that with 1wt% graphite addition the thermal conductivity of AlN in the through-plane to can achieve 210 W/(m K), which 25% higher than that of AlN without graphite. The graphite addition eliminates the oxygen impurity in AlN by a carbon reduction reaction in form of nanosized Dy2O3 particles. From electrochemical impedance spectroscopy manifested that the activation energy (Ea,g) of samples in grains is increased from 0.784 to 1.112 eV, suggesting that the concentrations of defects and impurities of Graphite/AlN multiphase ceramics are lower than those of monophase AlN ceramics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within this published article.

References

  1. X. Jing, Y. Li, J. Zhu, L. Chang, S. Maganti, N. Naik, B. Xu, V. Murugadoss, M. Huang, Z. Guo, Improving thermal conductivity of polyethylene/polypropylene by styrene-ethylene-propylene-styrene wrapping hexagonal boron nitride at the phase interface. Adv. Compos. Hybrid Mater. (2022). https://doi.org/10.1007/s42114-022-00438-x

    Article  Google Scholar 

  2. X. Hu, H. Wu, X. Lu, S. Liu, J. Qu, Improving thermal conductivity of ethylene propylene diene monomer/paraffin/expanded graphite shape-stabilized phase change materials with great thermal management potential via green steam explosion. Adv. Compos. Hybrid Mater. 4, 478–491 (2021). https://doi.org/10.1007/s42114-021-00300-6

    Article  CAS  Google Scholar 

  3. D. Pan, J. Dong, G. Yang, F. Su, B. Chang, C. Liu, Y. Zhu, Z. Guo, Ice template method assists in obtaining carbonized cellulose/boron nitride aerogel with 3D spatial network structure to enhance the thermal conductivity and flame retardancy of epoxy-based composites. Adv. Compos. Hybrid Mater (2021). https://doi.org/10.1007/s42114-021-00362-6

    Article  Google Scholar 

  4. J. Yu, Y. Zhang, Q. Guo, H. Hou, Y. Ma, Y, Zhao, Effect of pressure on anisotropy in elasticity, sound velocity, and thermal conductivity of vanadium borides. Adv. Compos. Hybrid Mater. (2022). https://doi.org/10.1007/s42114-021-00403-0

    Article  Google Scholar 

  5. S. Baskut, A. Cinar, S. Turan, Directional properties and microstructures of spark plasma sintered aluminum nitride containing graphene platelets. J. Eur. Ceram. Soc. 37, 3759–3772 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.03.032

    Article  CAS  Google Scholar 

  6. Q. Li, Z. Wang, C. Wu, X. Cheng, Microstructure and mechanical properties of aluminum nitride co-doped with cerium oxide via hot-pressing sintering. J. Alloy Compd. 640, 275–279 (2015). https://doi.org/10.1016/j.jallcom.2015.03.235

    Article  CAS  Google Scholar 

  7. Y. Xiong, H. Wang, Z. Fu, Transient liquid-phase sintering of AlN ceramics with CaF2 additive. J. Eur. Ceram. Soc. 33, 2199–2205 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.03.024

    Article  CAS  Google Scholar 

  8. C. Wang, C.Q. Peng, R.C. Wang, K. Yu, C. Li, Typical properties and preparation technologies of AlN packaging material. Chin. J. Nonferrous. Met. 7, 1729–1738 (2007)

    Google Scholar 

  9. A. Christensen, S. Graham, Thermal effects in packaging high power light emitting diode arrays. Appl. Therm. Eng. 29, 364–371 (2009). https://doi.org/10.1016/j.applthermaleng.2008.03.019

    Article  CAS  Google Scholar 

  10. G.A. Slack, Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids. 34, 321–335 (1973). https://doi.org/10.1016/0022-3697(73)90092-9

    Article  CAS  Google Scholar 

  11. G.A. Slack, T.F. McNelly, Growth of high purity AlN crystals. J. Cryst. Growth. 34, 263–279 (1976). https://doi.org/10.1016/0022-0248(76)90139-1

    Article  CAS  Google Scholar 

  12. G.A. Slack, R.A. Tanzilli, R.O. Pohl, J.W. Vandersande, The intrinsic thermal conductivity of AIN. J. Phys. Chem. Solids. 48, 641–647 (1987). https://doi.org/10.1016/0022-3697(87)90153-3

    Article  CAS  Google Scholar 

  13. R.R. Lee, Development of high thermal conductivity aluminum nitride ceramic. J. Am. Ceram. Soc. 74, 2242–2249 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb08291.x

    Article  CAS  Google Scholar 

  14. T. Sakai, M. Iwata, Effect of oxygen on sintering of AlN. J. Mater. Sci. 12, 1659–1665 (1977). https://doi.org/10.1007/BF00542817

    Article  CAS  Google Scholar 

  15. T. Sakai, Effect of the oxygen impurity on the sintering and the thermal conductivity of AlN polycrystal. J. Ceram. Soc. Jpn. 86, 174 (1978). https://doi.org/10.2109/jcersj1950.86.992_174

    Article  Google Scholar 

  16. W.J. Tseng, C.J. Tsai, Microporous layer structure in oxidized aluminium nitride polycrystals. J. Mater. Process. Technol. 146, 289–293 (2004). https://doi.org/10.1016/j.jmatprotec.2003.11.008

    Article  CAS  Google Scholar 

  17. B. Abeles, Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Phys. Rev. 131, 1906 (1963). https://doi.org/10.1103/PhysRev.131.1906

    Article  Google Scholar 

  18. N. Seiji, S. Kouichi, M. Takahiro, A. Yamakawa, Diffraction method detection of local lattice distortion in AIN ceramics by convergent beam electron. J. Am. Ceram. Soc. 78, 830–832 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08258.x

    Article  Google Scholar 

  19. D.L. Callahan, Comment on “Diffraction method detection of local lattice distortion in AIN ceramics by convergent beam electron.” J. Am. Ceram. Soc. 79, 1982–1983 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08025.x

    Article  CAS  Google Scholar 

  20. L. Qiao, H. Zhou, K. Chen, R. Fu, Effects of Li2O on the low temperature sintering and thermal conductivity of AlN ceramics. J. Eur. Ceram. Soc. 23, 1517–1524 (2003)

    Article  CAS  Google Scholar 

  21. Y. Ru, Q. Jie, L. Min, L. Guoqaing, Synthesis of yttrium aluminum garnet (YAG) powder by homogeneous precipitation combined with supercritical carbon dioxide or ethanol fluid drying. J. Eur. Ceram. Soc. 28, 2903–2914 (2008). https://doi.org/10.1016/j.jeurceramsoc.2008.05.005

    Article  CAS  Google Scholar 

  22. G. Pezzotti, A. Nakahira, M. Tajika, Effect of extended annealing cycles on the thermal conductivity of AlN/Y2O3 ceramics. J. Eur. Ceram. Soc. 20, 1319–1325 (2000)

    Article  CAS  Google Scholar 

  23. F.M. Xu, Z.J. Zhang, X.L. Shi, Y. Tan, J.M. Yang, Effects of adding yttrium nitrate on the mechanical properties of hot-pressed AlN ceramics. J. Alloy Compd. 509, 8688–8691 (2011). https://doi.org/10.1016/j.jallcom.2011.05.110

    Article  CAS  Google Scholar 

  24. G. Lai, Y. Nagai, Effect of oxygen on sintering of aluminium nitride with Y2O3 sintering aid. J. Ceram. Soc. Jpn. 103, 6–10 (1995). https://doi.org/10.2109/jcersj.103.6

    Article  CAS  Google Scholar 

  25. Y. Xiong, Z.Y. Fu, H. Wang, Y.C. Wang, Q.J. Zhang, Microstructure and IR transmittance of spark plasma sintering translucent AlN ceramics with CaF2 additive. Mater. Sci. Eng. B 123, 57–62 (2005). https://doi.org/10.2109/jcersj.103.6

    Article  Google Scholar 

  26. T.B. Jackson, A.V. Virkar, K.L. More, R.B.D. Jr., R.A. Cutler, High‐thermal‐conductivity aluminum nitride ceramics: the effect of thermodynamic, kinetic, and microstructural factors, J. Am. Ceram. Soc. 80, 1421–1435 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb03000.x

  27. Z. Fang, Y. Liu, Y. Wu, H. Zhou, Microstructure and dielectric dispersion of low-temperature sintered AlN microstructure and dielectric dispersion of low-temperature sintered AlN. J. Mater. Sci. Lett. 19, 95–97 (2000). https://doi.org/10.1023/A:1006626825671

    Article  CAS  Google Scholar 

  28. S. Kume, M. Yasuoka, S.K. Lee, A. Kan, H. Ogawa, K. Watari, Dielectric and thermal properties of AlN ceramics. J. Eur. Ceram. Soc. 27, 2967–2971 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.11.023

    Article  CAS  Google Scholar 

  29. P.H. Klein, W.J. Croft, Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77–300 K. J. Appl. Phys. 38, 1603–1607 (1967). https://doi.org/10.1063/1.1709730

    Article  CAS  Google Scholar 

  30. Y. Kurokawa, K. Utsumi, H. Takamizawa, Development and microstructural characterization of high-thermal-conductivity aluminum nitride ceramics. J. Am. Ceram. Soc. 71, 588–594 (1988). https://doi.org/10.1111/j.1151-2916.1988.tb05924.x

    Article  CAS  Google Scholar 

  31. S.N. Ivanov, P.A. Popov, G.V. Egorov, A.A. Sidorov, B.I. Kornev, L.M. Zhukova, V.P. Ryabov, Thermophysical properties of aluminum nitride ceramic. Phys. Solid State. 39, 81–83 (1997). https://doi.org/10.1134/1.1129837

    Article  Google Scholar 

  32. H. Buhr, G. Müller, Microstructure and thermal conductivity of AlN(Y2O3) ceramics sintered in different atmospheres. J. Eur. Ceram. Soc. 12, 271–277 (1993). https://doi.org/10.1016/0955-2219(93)90102-W

    Article  CAS  Google Scholar 

  33. M. Bickermann, B.M. Epelbaum, A. Winnacker, Characterization of bulk AlN with low oxygen content. J. Cryst. Growth. 269, 432–442 (2004). https://doi.org/10.1016/j.jcrysgro.2004.05.071

    Article  CAS  Google Scholar 

  34. K. Watari, T. Tsugoshi, H. Nakano, K. Urabe, S. Cao, K. Mori, K. Ishizaki, Microstructure and thermal conductivity of AlN ceramic with eliminated Grain boundary phase. Key. Eng. Mater. 247, 361–364 (2003). https://doi.org/10.4028/www.scientific.net/kem.247.361

    Article  CAS  Google Scholar 

  35. K. Watari, A. Tsuzuki, Y. Torii, Effect of rare-earth oxide addition on the thermal conductivity of sintered aluminium nitride. J. Mater. Sci. Lett. 11, 1508–1510 (1992). https://doi.org/10.1007/bf00729274

    Article  CAS  Google Scholar 

  36. K. Watari, H. Nakano, K. Urabe, K. Ishizaki, S. Cao, K. Mori, Thermal conductivity of AlN ceramic with a very low amount of grain boundary phase at 4 to 1000 K. J. Mater. Res. 17, 2940–2944 (2002). https://doi.org/10.1557/JMR.2002.0426

    Article  CAS  Google Scholar 

  37. H.S. Kim, J.M. Chae, Y.S. Oh, H.T. Kim, K.B. Shim, S.M. Lee, Effects of carbothermal reduction on the thermal and electrical conductivities of aluminum nitride ceramics. Ceram. Int. 36, 2039–2045 (2010). https://doi.org/10.1016/j.ceramint.2010.04.001

    Article  CAS  Google Scholar 

  38. H. Jiang, X.H. Wang, W. Lei, G.F. Fan, W.Z. Lu, Effects of two-step sintering on thermal and mechanical properties of aluminum nitride ceramics by impedance spectroscopy analysis. J. Eur. Ceram. Soc. 39, 249–254 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.09.026

    Article  CAS  Google Scholar 

  39. R. Roy, D. Das, P.K. Rout, A review of advanced mullite ceramics. Eng. Sci. (2021). https://doi.org/10.30919/es8d582

    Article  Google Scholar 

  40. H. Yang, Q. Li, Z. Wang, H. Wu, Y. Wu, X. Cheng, Effect of different sintering additives on the microstructure, phase compositions and mechanical properties of Si3N4/SiC. Ceram. ES Mater. Manuf. 15, 65–71 (2021)

    Google Scholar 

  41. H. Wu, Y. Zhong, Y. Tang et al., Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. Adv. Compos. Hybrid. Mater. (2021). https://doi.org/10.1007/s42114-021-00378-y

    Article  Google Scholar 

  42. Z. Sun, X. Huang, A. Xia, Z. Yan, L. Qian, Tunable bandwidth of negative permittivity from graphene-silicon carbide ceramics. Eng. Sci. 16, 19–25 (2021). https://doi.org/10.30919/es8d564

    Article  CAS  Google Scholar 

  43. H. Yang, Q. Li, Z. Wang, H. Wu, Y. Wu, P. Hou, X. Cheng, Effect of graphene on microstructure and mechanical properties of Si3N4/SiC ceramics. ES. Mater. Manuf. 12, 29–34 (2021). https://doi.org/10.30919/esmm5f418

    Article  CAS  Google Scholar 

  44. T. Wang, J. Xie, S. Dai, M. Ding, Y. Wang, Y. Shi, D. Zhou, Y. Shi, Influence of Dy2O3–CaF2 addition on preparation, microstructure and properties of AlN ceramics. J. Chin. Ceram. Soc. 46, 760–765 (2018). https://doi.org/10.14062/j.issn.0454-5648.2018.06.02

    Article  CAS  Google Scholar 

  45. K. Chang, W. Feng, L.Q. Chen, Effect of second-phase particle morphology on grain growth kinetics. Acta. Mater. 57, 5229–5236 (2009). https://doi.org/10.1016/j.actamat.2009.07.025

    Article  CAS  Google Scholar 

  46. K. Wang, C. Wang, Aluminum-vacancy-related dielectric relaxations in AlN ceramics. J. Am. Ceram. Soc. 101, 2009–2016 (2018). https://doi.org/10.1111/jace.15370

    Article  CAS  Google Scholar 

  47. S. Wang, X. Lu, A. Negi, J. He, K. Kim, H. Shao, P. Jiang, J. Liu, Q. Hao, Revisiting the Reduction of Thermal Conductivity in Nano-to Micro-Grained Bismuth Telluride: The Importance of Grain-Boundary Thermal Resistance, Eng. Sci.17, 45–55 (2021)

  48. Y. Zhao, F. Liu, K. Zhu, S. Maganti, Z. Zhao, P. Bai, Three-dimensional printing of the copper sulfate hybrid composites for supercapacitor electrodes with ultra-high areal and volumetric capacitances. Adv. Compos. Hybrid Mater. (2022). https://doi.org/10.1007/s42114-022-00430-5

    Article  Google Scholar 

  49. S. Gao, X. Zhao, Q. Fu et al., Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells. J. Mater. Sci. Technol. 126, 152–160 (2022). https://doi.org/10.1016/j.jmst.2022.03.01

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Loughborough Materials Characterization Centre (LMCC) for providing the characterization facilities. This work was supported by the Shanghai Municipal Natural Science Foundation, China (Granted No.19ZR1418500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianjun Xie or Ying Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2219 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Xie, J., Zhang, L. et al. The effect of graphite addition on thermal conductivity, microstructure, and electrochemical impedance spectroscopy of AlN ceramics. Journal of Materials Research 37, 2749–2760 (2022). https://doi.org/10.1557/s43578-022-00633-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00633-y

Keywords

Navigation