Skip to main content

Advertisement

Log in

Ti6Al7Nb–TiB nanocomposites for ortho-implant applications

  • Invited Feature Paper
  • FOCUS ISSUE: Advances in Titanium Bio-Implants
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The aim of this work was to study tribological behavior and biological response of selective laser-melted Ti6Al7Nb-based TiB-reinforced composites. The synergistic properties achieved by different content of the in situ TiB phase (1.5 and 3.0 wt%) enhanced the wear resistance of Ti6Al7Nb. Abrasion and microplastic deformations were the predominant wear mechanisms observed in these composites. The contact angle of simulated body fluid on TiB-reinforced sample surfaces revealed that the surfaces were moderately hydrophilic. In vitro cell studies with pre-osteoblasts confirmed the non-toxic nature of all the three samples (matrix—Ti6Al7Nb, 1.5, and 3.0 wt% TiB composites) studied here. The enhanced wear resistance coupled with its non-toxic nature and good cell proliferation demonstrated that the Ti6Al7Nb–TiB composites are promising candidates for the fabrication of biomedical implants. In addition, the results demonstrate that Ti6Al7Nb composites can be easily fabricated by solidification-based additive manufacturing processes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The authors will provide the data, if needed.

References

  1. D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals. Acta Mater. 117, 371 (2016)

    Article  CAS  Google Scholar 

  2. N. Singh, P. Hameed, R. Ummethala, G. Manivasagam, K.G. Prashanth, J. Eckert, Selective laser manufacturing of Ti-based alloys and composites: Impact of process parameters, application trends, and future prospects. Mater. Today Adv. 8, 100097 (2020)

    Article  Google Scholar 

  3. P. Wang, J. Eckert, K.G. Prashanth, M. Wei Wu, I. Kaban, L. Xi, S. Scudino, A review of particulate-reinforced aluminum matrix composites fabricated by selective laser melting. Trans. Nonferrous Metals Soc. China 30(8), 2001 (2020)

    Article  CAS  Google Scholar 

  4. S. Ford, M. Despeisse, Additive manufacturing and sustainability: An exploratory study of the advantages and challenges. J. Clean. Prod. 137, 1573 (2016)

    Article  Google Scholar 

  5. M. Roudnicka, F. Bayer, A. Michalcova, J. Kubasek, E.G. Hamed Alzubi, D. Vojtech, Biomedical titanium alloy prepared by additive manufacturing: Effect of processing on tribology. Manuf. Technol. 20(6), 809 (2020)

    Google Scholar 

  6. M. Benedetti, E. Torresani, M. Leoni, V. Fontanari, M. Bandini, C. Pederzolli, C. Potrich, The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting. J. Mech. Behav. Biomed. Mater. 71, 295 (2017)

    Article  CAS  Google Scholar 

  7. K.S. Suresh, M. Geetha, C. Richard, J. Landoulsi, H. Ramasawmy, S. Suwas, R. Asokamani, Effect of equal channel angular extrusion on wear and corrosion behavior of the orthopedic Ti-13Nb-13Zr alloy in simulated body fluid. Mater. Sci. Eng. C 32(4), 763 (2012)

    Article  CAS  Google Scholar 

  8. S. Bose, D. Ke, H. Sahasrabudhe, A. Bandyopadhyay, Prog. Mater Sci. 93, 45 (2018)

    Article  Google Scholar 

  9. E.D. Sheha, S.D. Gandhi, M.W. Colman, 3D printing in spine surgery. Ann. Transl. Med. 7(S5), S164 (2019)

    Article  Google Scholar 

  10. N. Xu, F. Wei, X. Liu, L. Jiang, H. Cai, Z. Li, M. Yu, F. Wu, Z. Liu, Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with ewing sarcoma. Spine 41(1), 50 (2016)

    Article  Google Scholar 

  11. K. Phan, A. Sgro, M.M. Maharaj, P. D’Urso, R.J. Mobbs, Application of a 3D custom printed patient specific spinal implant for C1/2 arthrodesis. J. Spine Surg. 2(4), 314 (2016)

    Article  Google Scholar 

  12. K. Prashanth, L. Löber, H.-J. Klauss, U. Kühn, J. Eckert, Characterization of 316L steel cellular dodecahedron structures produced by selective laser melting. Technologies (Basel) 4(4), 34 (2016)

    Article  Google Scholar 

  13. J. Lv, Z. Jia, J. Li, Y. Wang, J. Yang, P. Xiu, K. Zhang, H. Cai, Z. Liu, Electron beam melting fabrication of porous Ti6Al4V scaffolds: Cytocompatibility and osteogenesis. Adv. Eng. Mater. 17(9), 1391 (2015)

    Article  CAS  Google Scholar 

  14. Q. Chen, G.A. Thouas, Metallic implant biomaterials. Mater. Sci. Eng. R. Rep. 87, 1 (2015)

    Article  Google Scholar 

  15. B.P. Kumar, V. Venkatesh, K.A.J. Kumar, B.Y. Yadav, S.R. Mohan, J. Maxillofac. Oral Surg. 15, 425 (2016)

    Article  Google Scholar 

  16. L.C. Zhang, H. Attar, Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: A review. Adv. Eng. Mater. 18(4), 463 (2016)

    Article  CAS  Google Scholar 

  17. H. Attar, K.G. Prashanth, A.K. Chaubey, M. Calin, L.C. Zhang, S. Scudino, J. Eckert, Comparison of wear properties of commercially pure titanium prepared by selective laser melting and casting processes. Mater. Lett. 142, 38 (2015)

    Article  CAS  Google Scholar 

  18. S. Ehtemam-Haghighi, K.G. Prashanth, H. Attar, A.K. Chaubey, G.H. Cao, L.C. Zhang, Evaluation of mechanical and wear properties of Ti-xNb-7Fe alloys designed for biomedical applications. Mater. Des. 111, 592 (2016)

    Article  CAS  Google Scholar 

  19. L. Gaviria, J.P. Salcido, T. Guda, J.L. Ong, Current trends in dental implants. J. Korean Assoc. Oral Maxillofac. Surg. 40(2), 50 (2014)

    Article  Google Scholar 

  20. T. Ghassemi, A. Shahroodi, M.H. Ebrahimzadeh, A. Mousavian, J. Movaffagh, A. Moradi, Arch. Bone Joint Surg. 6, 90 (2018)

    Google Scholar 

  21. S. Gorsse, C. Hutchinson, M. Gouné, R. Banerjee, Additive manufacturing of metals: A brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Sci. Technol. Adv. Mater. 18(1), 584 (2017)

    Article  CAS  Google Scholar 

  22. M. Motyka, A. Baran-Sadleja, J. Sieniawski, M. Wierzbinska, K. Gancarczyk, Decomposition of deformed α′(α″) martensitic phase in Ti–6Al–4V alloy. Mater. Sci. Technol. (United Kingdom) 35(3), 260 (2019)

    Article  CAS  Google Scholar 

  23. M. Long, H.J. Rack, Friction and surface behaviour of selected titanium alloys during reciprocating-sliding motion. Wear 249(1–2), 157 (2001)

    Article  Google Scholar 

  24. K.G. Prashanth, J. Eckert, Formation of metastable cellular microstructures in selective laser melted alloys. J. Alloy. Compd. 707, 27 (2017)

    Article  CAS  Google Scholar 

  25. M. Fousová, D. Vojtěch, J. Kubásek, E. Jablonská, J. Fojt, Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process. J. Mech. Behav. Biomed. Mater. 69, 368 (2017)

    Article  Google Scholar 

  26. H.Y. Jung, S.J. Choi, K.G. Prashanth, M. Stoica, S. Scudino, S. Yi, U. Kühn, D.H. Kim, K.B. Kim, J. Eckert, Fabrication of Fe-based bulk metallic glass by selective laser melting: A parameter study. Mater. Des. 86, 703 (2015)

    Article  CAS  Google Scholar 

  27. T.H. Becker, P. Kumar, U. Ramamurty, Fracture and fatigue in additively manufactured metals. Acta Mater. 219, 117240 (2021)

    Article  CAS  Google Scholar 

  28. C. Zhao, Z. Wang, D. Li, L. Kollo, Z. Luo, W. Zhang, K. Gokuldoss, K.G. Prashanth, Selective laser melting of Cu–Ni–Sn: A comprehensive study on the microstructure, mechanical properties, and deformation behavior. Int. J. Plast. 138, 102–926 (2021)

    Article  Google Scholar 

  29. K.G. Prashanth, S. Scudino, J. Eckert, Defining the tensile properties of Al-12Si parts produced by selective laser melting. Acta Mater. 126, 25 (2017)

    Article  CAS  Google Scholar 

  30. K.G. Prashanth, S. Scudino, H.J. Klauss, K.B. Surreddi, L. Löber, Z. Wang, A.K. Chaubey, U. Kühn, J. Eckert, Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment. Mater. Sci. Eng., A 590, 153 (2014)

    Article  CAS  Google Scholar 

  31. Z. Wang, R. Ummethala, N. Singh, S. Tang, C. Suryanarayana, J. Eckert, K.G. Prashanth, Selective laser melting of aluminum and its alloys. Materials 13(20), 1 (2020)

    Article  Google Scholar 

  32. S. Scudino, C. Unterdörfer, K.G. Prashanth, H. Attar, N. Ellendt, V. Uhlenwinkel, J. Eckert, Additive manufacturing of Cu-10Sn bronze. Mater. Lett. 156, 202 (2015)

    Article  CAS  Google Scholar 

  33. T. Maity, N. Chawake, J.T. Kim, J. Eckert, K.G. Prashanth, Anisotropy in local microstructure: Does it affect the tensile properties of the SLM samples? Manuf. Lett. 15, 33 (2018)

    Article  Google Scholar 

  34. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro, Design and mechanical properties of new β type titanium alloys for implant materials. Mater. Sci. Eng. A 243(1–2), 244 (1998)

    Article  Google Scholar 

  35. L.C. Zhang, L.Y. Chen, A review on biomedical titanium alloys: Recent progress and prospect. Adv. Eng. Mater. 21(4), 1 (2019)

    Article  Google Scholar 

  36. J.W. Nicholson, Titanium alloys for dental implants: A review. Prosthesis 2(2), 100 (2020)

    Article  Google Scholar 

  37. M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants: A review. Prog. Mater Sci. 54(3), 397 (2009)

    Article  CAS  Google Scholar 

  38. A.A. Raheem, P. Hameed, R. Whenish, R.S. Elsen, G. Aswin, A.K. Jaiswal, K.G. Prashanth, G. Manivasagam, Biomimetics 6, 65 (2021)

    Article  Google Scholar 

  39. A. Bandyopadhyay, A. Shivaram, M. Isik, J.D. Avila, W.S. Dernell, S. Bose, Additively manufactured calcium phosphate reinforced CoCrMo alloy: Bio-tribological and biocompatibility evaluation for load-bearing implants. Addit. Manuf. 28, 312 (2019)

    CAS  Google Scholar 

  40. K. Zhuravleva, M. Bönisch, K.G. Prashanth, U. Hempel, A. Helth, T. Gemming, M. Calin, S. Scudino, L. Schultz, J. Eckert, A. Gebert, Production of porous β-type Ti-40Nb alloy for biomedical applications: Comparison of selective laser melting and hot pressing. Materials 6(12), 5700 (2013)

    Article  CAS  Google Scholar 

  41. R. Ummethala, P.S. Karamched, S. Rathinavelu, N. Singh, A. Aggarwal, K. Sun, E. Ivanov, L. Kollo, I. Okulov, J. Eckert, K.G. Prashanth, Selective laser melting of high-strength, low-modulus Ti–35Nb–7Zr–5Ta alloy. Materialia 14, 100–941 (2020)

    Article  Google Scholar 

  42. W. Kim, H. Kim, Microstructure and texture evolution of Ti-Nb-Si based alloys for biomedical applications. Rare Met. 25(6), 163 (2006)

    Article  Google Scholar 

  43. A.T. Sidambe, Materials 7, 8168 (2014)

    Article  Google Scholar 

  44. Y. Hu, F. Ning, H. Wang, W. Cong, B. Zhao, Laser engineered net shaping of quasi-continuous network microstructural TiB reinforced titanium matrix bulk composites: Microstructure and wear performance. Opt. Laser Technol. 99, 174 (2018)

    Article  CAS  Google Scholar 

  45. S. Gorsse, Y. Le Petitcorps, S. Matar, F. Rebillat, Investigation of the Young’s modulus of TiB needles in situ produced in titanium matrix composite. Mater. Sci. Eng. A 340(1–2), 80 (2003)

    Article  Google Scholar 

  46. A. Miklaszewski, M.M. Jurczyk, M. Kaczmarek, A. Paszel-Jaworska, A. Romaniuk, N. Lipińska, J. Żurawski, P. Urbaniak, M.M. Jurczyk, Nanoscale size effect in in situ titanium based composites with cell viability and cytocompatibility studies. Mater. Sci. Eng. C 73, 525 (2017)

    Article  CAS  Google Scholar 

  47. H. Attar, L. Löber, A. Funk, M. Calin, L.C. Zhang, K.G. Prashanth, S. Scudino, Y.S. Zhang, J. Eckert, Mechanical behavior of porous commercially pure Ti and Ti-TiB composite materials manufactured by selective laser melting. Mater. Sci. Eng. A 625, 350 (2015)

    Article  CAS  Google Scholar 

  48. H. Attar, K.G. Prashanth, L.C. Zhang, M. Calin, I.V. Okulov, S. Scudino, C. Yang, J. Eckert, Effect of powder particle shape on the properties of in situ Ti-TiB composite materials produced by selective laser melting. J. Mater. Sci. Technol. 31(10), 1001 (2015)

    Article  CAS  Google Scholar 

  49. H. Attar, M. Bönisch, M. Calin, L.C. Zhang, S. Scudino, J. Eckert, Selective laser melting of in situ titanium-titanium boride composites: Processing, microstructure and mechanical properties. Acta Mater. 76, 13 (2014)

    Article  CAS  Google Scholar 

  50. A. Miklaszewski, M.U. Jurczyk, M. Jurczyk, Microstructural development of Ti-B alloyed layer for hard tissue applications. J. Mater. Sci. Technol. 29(6), 565 (2013)

    Article  CAS  Google Scholar 

  51. M. Kaczmarek, M.U. Jurczyk, A. Miklaszewski, A. Paszel-Jaworska, A. Romaniuk, N. Lipińska, J. Żurawski, P. Urbaniak, K. Jurczyk, In vitro biocompatibility of titanium after plasma surface alloying with boron. Mater. Sci. Eng. C 69, 1240 (2016)

    Article  CAS  Google Scholar 

  52. C.N. Elias, J.H.C. Lima, R. Valiev, M.A. Meyers, JOM 60, 46 (2008)

    Article  CAS  Google Scholar 

  53. P. Hameed, C.F. Liu, R. Ummethala, N. Singh, H.H. Huang, G. Manivasagam, K.G. Prashanth, Biomorphic porous Ti6Al4V gyroid scaffolds for bone implant applications fabricated by selective laser melting. Prog. Addit. Manuf. 6(3), 455 (2021)

    Article  Google Scholar 

  54. T. Bhardwaj, M. Shukla, C.P. Paul, K.S. Bindra, Direct energy deposition: Laser additive manufacturing of titanium-molybdenum alloy: Parametric studies, microstructure and mechanical properties. J. Alloy. Compd. 787, 1238 (2019)

    Article  CAS  Google Scholar 

  55. C. Shi, B. Yan, L. Xie, L. Zhang, J. Wang, A. Takahara, H. Zeng, Long-range hydrophilic attraction between water and polyelectrolyte surfaces in oil. Angew. Chem. 128(48), 15241 (2016)

    Article  Google Scholar 

  56. V. Edachery, V. Swamybabu, A. Gurupatham, M. Paramasamy, and S. V. Kailas: The role of surface topography and normal load in the initiation of ratchetting-peak friction, seizure, scuffing, and elastic shakedown. Journal of Tribology 144(2) (2022).

  57. N. Singh, S. Acharya, K.G. Prashanth, K. Chatterjee, S. Suwas, Ti6Al7Nb-based TiB-reinforced composites by selective laser melting. J. Mater. Res. 36(18), 3691 (2021)

    Article  CAS  Google Scholar 

  58. N. Singh, S. Banerjee, O. Parkash, D. Kumar, Tribological and corrosion behavior of (100–x)(Fe70Ni30)-(x)ZrO2 composites synthesized by powder metallurgy. Mater. Chem. Phys. 205, 261 (2018)

    Article  CAS  Google Scholar 

  59. H.C. Madhu, V. Edachery, K.P. Lijesh, C.S. Perugu, S.V. Kailas, Fabrication of wear-resistant Ti3AlC2/Al3Ti hybrid aluminum composites by friction stir processing. Metall. Mater. Trans. A 51(8), 4086 (2020)

    Article  CAS  Google Scholar 

  60. L. Zhou, G. Liu, Z. Han, K. Lu, Grain size effect on wear resistance of a nanostructured AISI52100 steel. Scripta Mater. 58(6), 445 (2008)

    Article  CAS  Google Scholar 

  61. R.B. Waterhouse, D.E. Taylor, Fretting debris and the delamination theory of wear. Wear 29(3), 337 (1974)

    Article  Google Scholar 

  62. V. Edachery, A. John, A. Rajendran, V. Srinivasappa, S. Mathiyalagan, S. Kumar, S.V. Kailas, Enhancing tribological properties of Inconel X-750 superalloy through surface topography modification by shot blasting. Mater. Perform. Charact. 10(2), 20200172 (2021)

    Article  Google Scholar 

  63. S. Bahl, S. Raj, S. Vanamali, S. Suwas, K. Chatterjee, Effect of boron addition and processing of Ti–6Al–4V on corrosion behaviour and biocompatibility. Mater. Technol. (2014). https://doi.org/10.1179/1753555713Y.0000000118

    Article  Google Scholar 

  64. K. Das, A. Bandyopadhyay, S. Bose, Biocompatibility and in situ growth of TiO2 nanotubes on Ti using different electrolyte chemistry. J. Am. Ceram. Soc. 91(9), 2808 (2008)

    Article  CAS  Google Scholar 

  65. M. Rajput, P. Mondal, P. Yadav, K. Chatterjee, Light-based 3D bioprinting of bone tissue scaffolds with tunable mechanical properties and architecture from photocurable silk fibroin. Int. J. Biol. Macromol. 202, 644 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

N.S. would like to thank the financial support from C V Raman Fellowship funded by the Indian Institute of Science (IISc) Bangalore and the European Regional Development Fund through Project ASTRA6-6. This work was supported in part by funding from the Department of Science and Technology, Government of India (DST/NM/NB/2018/119(G)). The technical support provided by Tallinn University of Technology (Tallinn), Estonia, and Department of Mechanical Engineering, IISc is acknowledged. Further financial support from the High-end Foreign Experts Recruitment Program (G2021163004L) and the Guangdong International Science and Technology Cooperation Program (2021A0505050002) are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Prashanth.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N., Edachery, V., Rajput, M. et al. Ti6Al7Nb–TiB nanocomposites for ortho-implant applications. Journal of Materials Research 37, 2525–2535 (2022). https://doi.org/10.1557/s43578-022-00578-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00578-2

Keywords

Navigation