Skip to main content
Log in

Tunable bandgap and vacancy defects in GaSe/SnSe van der Waals heterostructure

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Herein, GaSe/SnSe van der Waals heterostructure is established based on first-principles calculations of density functional theory (DFT). And the changes of band structure, bandgap, density of states, electronic density difference, and optical properties of GaSe/SnSe heterostructure before and after the introduction of Ga, Sa1, Sn, and Se2 vacancies are systematically studied. The results show that GaSe/SnSe heterostructures and four vacancy heterostructures can exist stably. The band structure of GaSe/SnSe heterostructure changes greatly with the introduction of vacancy. When Ga vacancy is introduced, the GaSe monolayer and GaSe/SnSe heterostructure exhibit obvious metal properties. In addition, the introduction of vacancies makes GaSe/SnSe heterostructures available for ultraviolet and visible light absorption and conversion. The introduction of vacancies in GaSe/SnSe heterostructures provides a feasible strategy for adjusting the photoelectric properties of two-dimensional photoelectric nanodevices. It has good potential and broad application prospects in infrared light conversion and detection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, S. Jiazhong, Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells 90(12), 1773 (2006)

    Google Scholar 

  2. L.W. Yan Shicheng, L. Chaosheng, Z. Zhigang, Progress in research of novel photocatalytic materials. Mater. China 29(1), 1 (2010)

    Google Scholar 

  3. M.M. Obeid, A. Bafekry, S.U. Rehman, C. Nguyen, V: A type-II GaSe/HfS2 van der Waals heterostructure as promising photocatalyst with high carrier mobility. Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2020.147607

    Article  Google Scholar 

  4. B. Wang, X. Li, X. Cai, W. Yu, L. Zhang, R. Zhao, S. Ke, Blue phosphorus/Mg(OH)2 van der Waals heterostructures as promising visible-light photocatalysts for water splitting. J. Phys. Chem. C 122(13), 7075 (2018)

    CAS  Google Scholar 

  5. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37 (1972)

    CAS  Google Scholar 

  6. H.T.T. Nguyen, T.V. Vu, N.T.T. Binh, D.M. Hoat, N.V. Hieu, N.T.T. Anh, C.V. Nguyen, H.V. Phuc, H.R. Jappor, M.M. Obeid, N.N. Hieu, Strain-tunable electronic and optical properties of monolayer GeSe: promising for photocatalytic water splitting applications. Chem. Phys. 529, 110543 (2020)

    CAS  Google Scholar 

  7. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of grapheme. Rev. Mod. Phys. 81(1), 109 (2009)

    CAS  Google Scholar 

  8. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666 (2004)

    CAS  Google Scholar 

  9. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102(30), 10451 (2005)

    CAS  Google Scholar 

  10. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699 (2012)

    CAS  Google Scholar 

  11. F.A. Ponce, D.P. Bour, Nitride-based semiconductors for blue and green light-emitting devices. Nature 386(6623), 351 (1997)

    CAS  Google Scholar 

  12. M.A. Green, S.P. Bremner, Energy conversion approaches and materials for high-efficiency photovoltaics. Nat. Mater. 16(1), 23 (2017)

    Google Scholar 

  13. A. Polman, M. Knight, E.C. Garnett, B. Ehrler, W.C. Sinke, Photovoltaic materials: present efficiencies and future challenges. Science (2016). https://doi.org/10.1126/science.aad4424

    Article  Google Scholar 

  14. M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.Y. Ho-Baillie, Solar cell efficiency tables (version 50). Prog. Photovolt. 25(7), 668 (2017)

    Google Scholar 

  15. I.V. Sedovaa, M.V. Lebedev, G.V. Klimko, S.V. Sorokin, V.A. Solov’ev, E. Cherkashinin, S. Nappini, E. Magnano, M.N. Drozdov, P.S. Kop’ev, S.V. Ivanov, Coherent InAs/CdSe and InAs/ZnTe/CdSe heterovalent interfaces: electronic and chemical structure. Appl. Surf. Sci. 448, 455 (2018)

    Google Scholar 

  16. Y. Liu, X. Hao, H. Hu, Z. Jin, High efficiency electron transfer realized over NiS2/MoSe2 S-scheme heterojunction in photocatalytic hydrogen evolution. Acta Physicochim. Sin. 37(6), 2008030 (2021)

    Google Scholar 

  17. Y. Liu, G.-J. Zhao, J.-X. Zhang, F.-Q. Bai, H.-X. Zhang, First-principles investigation on the interfacial interaction and electronic structure of BiVO4/WO3 heterostructure semiconductor material. Appl. Surf. Sci. 549, 149309 (2021)

    CAS  Google Scholar 

  18. Y.H. Xu, Z.Q. Fan, Z.H. Zhang, T. Zhao, Electronic and transport properties of GaAs/InSe van der Waals heterostructure. Appl. Surf. Sci. 547, 149174 (2021)

    CAS  Google Scholar 

  19. J. Shang, L. Pan, X. Wang, J. Li, H.-X. Deng, Z. Wei, Tunable electronic and optical properties of InSe/InTe van der Waals heterostructures toward optoelectronic applications. J. Mater. Chem. C 6(27), 7201 (2018)

    CAS  Google Scholar 

  20. H. Ohno, H. Munekata, T. Penney, S. von Molnár, L.L. Chang, Magnetotransport properties of p-type (In, Mn)As diluted magnetic III–V semiconductors. Phys. Rev. Lett. (1992). https://doi.org/10.1103/PhysRevLett.68.2664

    Article  Google Scholar 

  21. T. Dietl, H. Ohno, Dilute ferromagnetic semiconductors: physics and spintronic structures. Rev. Mod. Phys. 86(1), 187 (2014)

    CAS  Google Scholar 

  22. T.-C. King, Y.-P. Yang, Y.-S. Liou, C.-J. Wu, Tunable defect mode in a semiconductor-dielectric photonic crystal containing extrinsic semiconductor defect. Solid State Commun. 152(24), 2189 (2012)

    CAS  Google Scholar 

  23. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010)

    Google Scholar 

  24. K. Dolui, I. Rungger, C. Das Pemmaraju, S. Sanvito, Possible doping strategies for MoS2 monolayers: an ab initio study. Phys. Rev. B 88(7), 075420 (2013)

    Google Scholar 

  25. H.-P. Komsa, J. Kotakoski, S. Kurasch, O. Lehtinen, U. Kaiser, A.V. Krasheninnikov, Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys. Rev. Lett. 109(3), 035503 (2012)

    Google Scholar 

  26. F. Segovia-Chaves, H. Vinck-Posada, Effects of hydrostatic pressure on the band structure in two-dimensional semiconductor square photonic lattice with defect. Physica B 545, 203 (2018)

    CAS  Google Scholar 

  27. A. Zak, Y. Feldman, V. Lyakhovitskaya, G. Leitus, R. Popovitz-Biro, E. Wachtel, H. Cohen, S. Reich, R. Tenne, Alkali metal intercalated fullerene-like MS2 (M = W, Mo) nanoparticles and their properties. J. Am. Chem. Soc. 124(17), 4747 (2002)

    CAS  Google Scholar 

  28. K. Kabita, J. Maibam, B.I. Sharma, R.K. Thapa, R.K.B. Singh, First principle study on pressure-induced electronic structure and elastic properties of indium phosphide (InP). Indian J. Phys. 89(12), 1265 (2015)

    CAS  Google Scholar 

  29. C. Mellot-Draznieks, Role of computer simulations in structure prediction and structure determination: from molecular compounds to hybrid frameworks. J. Mater. Chem. 17(41), 4348 (2007)

    CAS  Google Scholar 

  30. K. Lejaeghere, G. Bihlmayer, T. Bjoerkman, P. Blaha, S. Bluegel, V. Blum, D. Caliste, I.E. Castelli, S.J. Clark, A. Dal Corso, S. de Gironcoli, T. Deutsch, J.K. Dewhurst, I. Di Marco, C. Draxl, M. Dulak, O. Eriksson, J.A. Flores-Livas, K.F. Garrity, L. Genovese, P. Giannozzi, M. Giantomassi, S. Goedecker, X. Gonze, O. Granaes, E.K.U. Gross, A. Gulans, F. Gygi, D.R. Hamann, P.J. Hasnip, N.A.W. Holzwarth, D. Iusan, D.B. Jochym, F. Jollet, D. Jones, G. Kresse, K. Koepernik, E. Kuecuekbenli, Y.O. Kvashnin, I.L.M. Locht, S. Lubeck, M. Marsman, N. Marzari, U. Nitzsche, L. Nordstrom, T. Ozaki, L. Paulatto, C.J. Pickard, W. Poelmans, M.I.J. Probert, K. Refson, M. Richter, G.-M. Rignanese, S. Saha, M. Scheffler, M. Schlipf, K. Schwarz, S. Sharma, F. Tavazza, P. Thunstroem, A. Tkatchenko, M. Torrent, D. Vanderbilt, M.J. van Setten, V. Van Speybroeck, J.M. Wills, J.R. Yates, G.-X. Zhang, S. Cottenier, Reproducibility in density functional theory calculations of solids. Science (2016). https://doi.org/10.1126/science.aad3000

    Article  Google Scholar 

  31. C. Chen, Y. Hsu, J.Y. Huang, C. Chang, J. Zhang, C. Pan, Generation properties of coherent infrared radiation in the optical absorption region of GaSe crystal. Opt. Express 14(22), 10636 (2006)

    CAS  Google Scholar 

  32. Y. Zhou, Y. Nie, Y. Liu, K. Yan, J. Hong, C. Jin, Y. Zhou, J. Yin, Z. Liu, H. Peng, Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets. ACS Nano 8(2), 1485 (2014)

    CAS  Google Scholar 

  33. O.I. Aksimentyeva, P.Y. Demchenko, V.P. Savchyn, O.A. Balitskii, The chemical exfoliation phenomena in layered GaSe–polyaniline composite. Nanoscale Res. Lett. 8, 29 (2013)

    Google Scholar 

  34. P. Hu, Z. Wen, L. Wang, P. Tan, K. Xiao, Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 6(7), 5988 (2012)

    CAS  Google Scholar 

  35. M.I. Zappia, G. Bianca, S. Bellani, M. Serri, L. Najafi, R. Oropesa-Nunez, B. Martin-Garcia, D. Bousa, D. Sedmidubsky, V. Pellegrini, Z. Sofer, A. Cupolillo, F. Bonaccorso, Solution-processed GaSe nanoflake-based films for photoelectrochemical water splitting and photoelectrochemical-type photodetectors. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.201909572

    Article  Google Scholar 

  36. Z. Ben Aziza, D. Pierucci, H. Henck, M.G. Silly, C. David, M. Yoon, F. Sirotti, K. Xiao, M. Eddrief, J.-C. Girard, A. Ouerghi, Tunable quasiparticle band gap in few-layer GaSe/graphene van der Waals heterostructures. Phys. Rev. B 96(3), 035407 (2017)

    Google Scholar 

  37. C.S. Jung, F. Shojaei, K. Park, J.Y. Oh, H.S. Im, D.M. Jang, J. Park, H.S. Kang, Red-to-ultraviolet emission tuning of two-dimensional gallium sulfide/selenide. ACS Nano 9(10), 9585 (2015)

    CAS  Google Scholar 

  38. L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, The intrinsic thermal conductivity of SnSe—Reply. Nature 539(7627), E2 (2016)

    CAS  Google Scholar 

  39. I. Loa, R.J. Husband, R.A. Downie, S.R. Popuri, J.-W.G. Bos, Structural changes in thermoelectric SnSe at high pressures. J. Phys. Condens. Matter 27(7), 072202 (2015)

    CAS  Google Scholar 

  40. G. Shi, E. Kioupakis, Quasiparticle band structures and thermoelectric transport properties of p-type SnSe. J. Appl. Phys. (2015). https://doi.org/10.1063/1.4907805

    Article  Google Scholar 

  41. M.A. Franzman, C.W. Schlenker, M.E. Thompson, R.L. Brutchey, Solution-phase synthesis of SnSe nanocrystals for use in solar cells. J. Am. Chem. Soc. 132(12), 4060 (2010)

    CAS  Google Scholar 

  42. L. Li, Z. Chen, Y. Hu, X. Wang, T. Zhang, W. Chen, Q. Wang, Single-layer single-crystalline SnSe nanosheets. J. Am. Chem. Soc. 135(4), 1213 (2013)

    CAS  Google Scholar 

  43. P.D. Antunez, J.J. Buckley, R.L. Brutchey, Tin and germanium monochalcogenide IV–VI semiconductor nanocrystals for use in solar cells. Nanoscale 3(6), 2399 (2011)

    CAS  Google Scholar 

  44. S. Zhao, H. Wang, Y. Zhou, L. Liao, Y. Jiang, X. Yang, G. Chen, M. Lin, Y. Wang, H. Peng, Z. Liu, Controlled synthesis of single-crystal SnSe nanoplates. Nano Res. 8(1), 288 (2015)

    CAS  Google Scholar 

  45. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. Lett. 140, 1133 (1965)

    Google Scholar 

  46. M. Segall, P. Lindan, M. Probert, C. Pickard, P. Hasnip, S. Clark, M. Payne, First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14(11), 2717 (2002)

    CAS  Google Scholar 

  47. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997)

    CAS  Google Scholar 

  48. J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 124(21), 219906 (2006)

    Google Scholar 

  49. J.P. Perdew, K. Burke, M. Ernzerhof, Local and gradient-corrected density functionals. ACS Sympos. 629, 453 (1996)

    CAS  Google Scholar 

  50. J.P. Perdew, K. Burke, M. Ernzerhof, Comment on “Generalized gradient approximation made simple”—Reply. Phys. Rev. Lett. 80(4), 891 (1998)

    CAS  Google Scholar 

  51. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    CAS  Google Scholar 

  52. M. Friak, M. Sob, V. Vitek, Ab initio study of the ideal tensile strength and mechanical stability of transition-metal disilicides. Phys. Rev. B 68(18), 184101 (2003)

    Google Scholar 

  53. L. Wang, K.C. Lai, L. Huang, J.W. Evans, Y. Han, Low-index surface energies, cleavage energies, and surface relaxations for crystalline NiAl from first-principles calculations. Surf. Sci. 695, 121532 (2020)

    CAS  Google Scholar 

  54. H.-S. Lee, T. Mizoguchi, T. Yamamoto, S.-J.L. Kang, Y. Ikuhara, First-principles calculation of defect energetics in cubic-BaTiO3 and a comparison with SrTiO3. Acta Mater. 55(19), 6535 (2007)

    CAS  Google Scholar 

  55. F.-F. Ge, W.-D. Wu, L.-H. Cao, X.-M. Wang, H.-P. Wang, Y. Dai, H.-B. Wang, J. Shen, The structure and defect formation energy in tetragonal PbTiO3: ab initio calculation. Ferroelectrics 401, 154 (2010)

    CAS  Google Scholar 

  56. S. Sun, F. Meng, H. Wang, H. Wang, Y. Ni, Novel two-dimensional semiconductor SnP3: high stability, tunable bandgaps and high carrier mobility explored using first-principles calculations. J. Mater. Chem. A 6(25), 11890 (2018)

    CAS  Google Scholar 

  57. V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340(6139), 1226419 (2013)

    Google Scholar 

  58. P. Peng, Z. Jin, R. Yang, Z. Hu, First principles study of effect of lattice misfit on the bonding strength of Ni/Ni3Al interface. J. Mater. Sci. Mater. Electron. 39(12), 3957 (2004)

    CAS  Google Scholar 

  59. D. Nandwana, E. Ertekin, Ripples, strain, and misfit dislocations: structure of graphene–boron nitride super lattice interfaces. Nano Lett. 15(3), 1468 (2015)

    CAS  Google Scholar 

  60. Z. Lichuan, Q. Guangzhao, F. Wuzhang, C. Huijuan, Z. Qingrong, Y. Qingbo, S. Gang, SnSe monolayer: super-flexible, auxetic material with ultralow lattice thermal conductivity and ultrahigh hole mobility. Appl. Phys. Lett. 88(17), 5360 (2015)

    Google Scholar 

  61. C. Zhang, Y. Zhou, Y. Zhang, S. Zhao, J. Fang, X. Sheng, H. Zhang, Self-assembly hierarchical silica nanotubes with vertically aligned silica nanorods and embedded platinum nanoparticles. ACS Sustain. Chem. Eng. 5(2), 1578 (2017)

    CAS  Google Scholar 

  62. M. Gratzel, Photoelectrochemical cells. Nature 414(6861), 338 (2001)

    CAS  Google Scholar 

  63. L. Zhu, X. Cao, C. Gong, A. Jiang, Y. Cheng, J. Xiao, Preparation of Cu3N/MoS2 heterojunction through magnetron sputtering and investigation of its structure and optical performance. Materials 13(8), 1873 (2020)

    Google Scholar 

  64. M.A. Hassan, J.-H. Kang, M.A. Johar, J.-S. Ha, S.-W. Ryu, High-performance ZnS/GaN heterostructure photoanode for photoelectrochemical water splitting applications. Acta Mater. 146, 171 (2018)

    CAS  Google Scholar 

  65. A. Djurisic, E. Li, The optical dielectric function: excitonic effects at E-0 critical point. J. Phys. Soc. Jpn 70(7), 2164 (2001)

    CAS  Google Scholar 

  66. M. Fadaie, N. Shahtahmassebi, M.R. Roknabad, Effect of external electric field on the electronic structure and optical properties of stanene. Opt. Quantum Electron. 48(9), 440 (2016)

    Google Scholar 

  67. M. Sun, J.-P. Chou, J. Gao, Y. Cheng, A. Hu, W. Tang, G. Zhang, Exceptional optical absorption of buckled arsenene covering a broad spectral range by molecular doping. ACS Omega 3(8), 8514 (2018)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Zhou.

Ethics declarations

Conflict of interest

All authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, J. & Zhou, X. Tunable bandgap and vacancy defects in GaSe/SnSe van der Waals heterostructure. Journal of Materials Research 36, 4927–4937 (2021). https://doi.org/10.1557/s43578-021-00430-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00430-z

Keywords

Navigation