Skip to main content
Log in

Reliability physics of ferroelectric/negative capacitance transistors for memory/logic applications: An integrative perspective

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Despite the remarkable development in ferroelectric HfO2-based FETs, key reliability challenges (e.g., retention, endurance, etc.) may still limit their widespread adoption in memory and logic applications. In this paper, we present a simple theoretical framework—based on the Landau theory of phase transition—to design both ferroelectric FETs (FeFETs) and negative capacitance transistors (NCFETs) and investigate their reliability issues. For FeFETs, we analyze the role of interface and bulk traps on memory window closure to quantify endurance under different operating conditions. For NCFETs, we discuss the beneficial role of NC effect in reducing (or even eliminating) the persistent reliability issue of negative bias temperature instability that has plagued MOSFETs for decades. FE/NCFETs can also be affected by the Hot Atom Damage involving switching-induced bond dissociation during transient overshoot. We conclude by discussing how other FET reliability issues (e.g., TDDB, HCD, etc.) may also have to be reinterpreted for FE/NCFETs.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The data supporting the findings of this research are available within the article.

References

  1. M.A. Alam, M. Si, P.D. Ye, A critical review of recent progress on negative capacitance field-effect transistors. Appl. Phys. Lett. 114(9), 090401 (2019). https://doi.org/10.1063/1.5092684

    Article  CAS  Google Scholar 

  2. S. Salahuddin, S. Datta, Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8(2), 405–410 (2008). https://doi.org/10.1021/nl071804g

    Article  CAS  Google Scholar 

  3. J.L. Moll, Y. Tarui, A new solid state memory resistor. IEEE Trans. Electron Device 10(5), 338 (1963). https://doi.org/10.1109/T-ED.1963.15245

    Article  Google Scholar 

  4. G.A. Salvatore, D. Bouvet, A.M. Ionescu, Demonstration of subthrehold swing smaller than 60mV/decade in Fe-FET with P(VDF-TrFE)/SiO2 gate stack. in IEEE International Electron Devices Meeting (IEDM), 2008, pp. 4–7. https://doi.org/10.1109/IEDM.2008.4796642

  5. N. Gong, T.P. Ma, Why is FE-HfO2 more suitable than PZT or SBT for scaled nonvolatile 1-T memory cell? A retention perspective. IEEE Electron Device Lett. 37(9), 1123–1126 (2016). https://doi.org/10.1109/LED.2016.2593627

    Article  CAS  Google Scholar 

  6. T. Mikolajick, U. Schroeder, S. Slesazeck, The past, the present, and the future of ferroelectric memories. IEEE Trans. Electron Devices 67(4), 1434–1443 (2020). https://doi.org/10.1109/TED.2020.2976148

    Article  CAS  Google Scholar 

  7. M. Masuduzzaman, D. Varghese, H. Guo, S. Krishnan, M.A. Alam, The origin and consequences of push-pull breakdown in series connected dielectrics. Appl. Phys. Lett. 99(26), 6–9 (2011). https://doi.org/10.1063/1.3672216

    Article  CAS  Google Scholar 

  8. M. Masuduzzaman, S. Xie, J. Chung, D. Varghese, J. Rodriguez, S. Krishnan, M.A. Alam, The origin of broad distribution of breakdown times in polycrystalline thin film dielectrics. Appl. Phys. Lett. 101(15), 153511 (2012). https://doi.org/10.1063/1.4758684

    Article  CAS  Google Scholar 

  9. A.I. Khan, A. Keshavarzi, S. Datta, The future of ferroelectric field-effect transistor technology. Nat. Electron. 3(10), 588–597 (2020). https://doi.org/10.1038/s41928-020-00492-7

    Article  Google Scholar 

  10. T.S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, U. Böttger, Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. (2011). https://doi.org/10.1063/1.3634052

    Article  Google Scholar 

  11. J. Müller, T.S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, T. Mikolajick, Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett. 12(8), 4318–4323 (2012). https://doi.org/10.1021/nl302049k

    Article  CAS  Google Scholar 

  12. J. Muller, T.S. Boscke, S. Muller, E. Yurchuk, P. Polakowski, J. Paul, D. Martin, T. Schenk, K. Khullar, A. Kersch, W. Weinreich, S. Riedel, K. Seidel, A. Kumar, T.M. Arruda, S.V. Kalinin, T. Schlosser, R. Boschke, R. van Bentum, U. Schroder, T. Mikolajick, Ferroelectric hafnium oxide: a CMOS-compatible and highly scalable approach to future ferroelectric memories. in IEEE International Electron Devices Meeting (IEDM), 2013, pp. 10.8.1–10.8.4. https://doi.org/10.1109/IEDM.2013.6724605

  13. M. Trentzsch, S. Flachowsky, R. Richter, J. Paul, B. Reimer, D. Utess, S. Jansen, H. Mulaosmanovic, S. Muller, S. Slesazeck, J. Ocker, M. Noack, J. Muller, P. Polakowski, J. Schreiter, S. Beyer, T. Mikolajick, B. Rice, A 28nm HKMG super low power embedded NVM technology based on ferroelectric FETs. in IEEE International Electron Devices Meeting (IEDM), 2016, pp. 11.5.1–11.5.4. https://doi.org/10.1109/IEDM.2016.7838397

  14. S. Dünkel, M. Trentzsch, R. Richter, P. Moll, C. Fuchs, O. Gehring, M. Majer, S. Wittek, B. Müller, T. Melde, H. Mulaosmanovic, S. Slesazeck, S. Müller, J. Ocker, M. Noack, D.A. Löhr, P. Polakowski, J. Müller, T. Mikolajick, J. Höntschel, B. Rice, J. Pellerin, S. Beyer, A FeFET based super-low-power ultra-fast embedded NVM technology for 22nm FDSOI and beyond. in IEEE International Electron Devices Meeting (IEDM), 2017, pp. 19.7.1–19.7.4. https://doi.org/10.1109/IEDM.2017.8268425

  15. C.H. Cheng, A. Chin, Low-leakage-current DRAM-like memory using a one-transistor ferroelectric MOSFET with a Hf-based gate dielectric. IEEE Electron Device Lett. 35(1), 138–140 (2014). https://doi.org/10.1109/LED.2013.2290117

    Article  CAS  Google Scholar 

  16. Z. Krivokapic, U. Rana, R. Galatage, A. Razavieh, A. Aziz, J. Liu, J. Shi, H. J. Kim, R. Sporer, C. Serrao, A. Busquet, P. Polakowski, J. Muller, W. Kleemeier, A. Jacob, D. Brown, A. Knorr, R. Carter, S. Banna, J. Müller, W. Kleemeier, A. Jacob, D. Brown, A. Knorr, R. Carter, S. Banna, 14nm Ferroelectric FinFET technology with steep subthreshold slope for ultra low power applications. in IEEE International Electron Devices Meeting (IEDM), 2017, pp. 15.1.1–15.1.4. https://doi.org/10.1109/IEDM.2017.8268393

  17. C.-C. Fan, C.-H. Cheng, Y.-R. Chen, C. Liu, C.-Y. Chang, Energy-efficient HfAlO<inf>x</inf> NCFET: Using gate strain and defect passivation to realize nearly hysteresis-free sub-25mV/dec switch with ultralow leakage. in IEEE International Electron Devices Meeting (IEDM), 2017, pp. 23.2.1–23.2.4. https://doi.org/10.1109/IEDM.2017.8268444

  18. R. Huang, X. B. Jiang, S.F. Guo, P.P. Ren, P. Hao, Z.Q. Yu, Z. Zhang, Y.Y. Wang, R.S. Wang, Variability- and reliability-aware design for 16/14nm and beyond technology. in IEEE International Electron Devices Meeting (IEDM), 2017, vol. 7, pp. 12.4.1–12.4.4. https://doi.org/10.1109/IEDM.2017.8268378

  19. M. Masuduzzaman, D. Varghese, J.A. Rodriguez, S. Krishnan, M.A. Alam, Observation and control of hot atom damage in ferroelectric devices. IEEE Trans. Electron Devices 61(10), 3490–3498 (2014). https://doi.org/10.1109/TED.2014.2347046

    Article  CAS  Google Scholar 

  20. K. Karda, C. Mouli, M.A. Alam, Switching dynamics and hot atom damage in landau switches. IEEE Electron Device Lett. 37(6), 801–804 (2016). https://doi.org/10.1109/LED.2016.2562007

    Article  Google Scholar 

  21. M. Pešić, C. Künneth, M. Hoffmann, H. Mulaosmanovic, S. Müller, E.T. Breyer, U. Schroeder, A. Kersch, T. Mikolajick, S. Slesazeck, A computational study of hafnia-based ferroelectric memories: from ab initio via physical modeling to circuit models of ferroelectric device. J. Comput. Electron. 16(4), 1236–1256 (2017). https://doi.org/10.1007/s10825-017-1053-0

    Article  Google Scholar 

  22. C. Alessandri, P. Pandey, A. Abusleme, A. Seabaugh, Monte Carlo simulation of switching dynamics in polycrystalline ferroelectric capacitors. IEEE Trans. Electron Devices 66(8), 3527–3534 (2019). https://doi.org/10.1109/ted.2019.2922268

    Article  CAS  Google Scholar 

  23. M. Pešić, F.P.G. Fengler, L. Larcher, A. Padovani, T. Schenk, E.D. Grimley, X. Sang, J.M. LeBeau, S. Slesazeck, U. Schroeder, T. Mikolajick, Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors. Adv. Funct. Mater. 26(25), 4601–4612 (2016). https://doi.org/10.1002/adfm.201600590

    Article  CAS  Google Scholar 

  24. W. Cao, K. Banerjee, Is negative capacitance FET a steep-slope logic switch? Nat. Commun. 11(1), 1–8 (2020). https://doi.org/10.1038/s41467-019-13797-9

    Article  CAS  Google Scholar 

  25. M. Hoffmann, M. Pešić, S. Slesazeck, U. Schroeder, T. Mikolajick, On the stabilization of ferroelectric negative capacitance in nanoscale devices. Nanoscale 10(23), 10891–10899 (2018). https://doi.org/10.1039/c8nr02752h

    Article  CAS  Google Scholar 

  26. M. Hoffmann, B. Max, T. Mittmann, U. Schroeder, S. Slesazeck, T. Mikolajick, Demonstration of high-speed hysteresis-free negative capacitance in ferroelectric Hf0.5Zr0.5O2. in IEEE International Electron Devices Meeting (IEDM), 2018, pp. 31.6.1–31.6.4. https://doi.org/10.1109/IEDM.2018.8614677

  27. G. Pahwa, T. Dutta, A. Agarwal, S. Khandelwal, S. Salahuddin, C. Hu, Y.S. Chauhan, Analysis and compact modeling of negative capacitance transistor with high ON-current and negative output differential resistance—Part II: model validation. IEEE Trans. Electron Devices 63(12), 4986–4992 (2016). https://doi.org/10.1109/TED.2016.2614436

    Article  Google Scholar 

  28. H.P. Chen, V.C. Lee, A. Ohoka, J. Xiang, Y. Taur, Modeling and design of ferroelectric MOSFETs. IEEE Trans. Electron Devices 58(8), 2401–2405 (2011). https://doi.org/10.1109/TED.2011.2155067

    Article  CAS  Google Scholar 

  29. N. Zagni, P. Pavan, M.A. Alam, A memory window expression to evaluate the endurance of ferroelectric FETs. Appl. Phys. Lett. 117(15), 152901 (2020). https://doi.org/10.1063/5.0021081

    Article  CAS  Google Scholar 

  30. T. Ali, P. Polakowski, S. Riedel, T. Büttner, T. Kämpfe, M. Rudolph, B. Pätzold, K. Seidel, D. Löhr, R. Hoffmann, M. Czernohorsky, K. Kühnel, X. Thrun, N. Hanisch, P. Steinke, J. Calvo, J. Müller, Silicon doped hafnium oxide (HSO) and hafnium zirconium oxide (HZO) based FeFET: a material relation to device physics. Appl. Phys. Lett. 112(22), 222903 (2018). https://doi.org/10.1063/1.5029324

    Article  CAS  Google Scholar 

  31. K. Ni, P. Sharma, J. Zhang, M. Jerry, J.A. Smith, K. Tapily, R. Clark, S. Mahapatra, S. Datta, Critical role of interlayer in Hf 0.5 Zr 0.5 O 2 ferroelectric FET nonvolatile memory performance. IEEE Trans. Electron Devices 65(6), 2461–2469 (2018). https://doi.org/10.1109/TED.2018.2829122

    Article  CAS  Google Scholar 

  32. T. Mikolajick, S. Slesazeck, M.H. Park, U. Schroeder, Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors. MRS Bull. 43(5), 340–346 (2018). https://doi.org/10.1557/mrs.2018.92

    Article  CAS  Google Scholar 

  33. H.T. Lue, C.J. Wu, T.Y. Tseng, Device modeling of ferroelectric memory field-effect transistor (FeMFET). IEEE Trans. Electron Devices 49(10), 1790–1798 (2002). https://doi.org/10.1109/TED.2002.803626

    Article  Google Scholar 

  34. H. Mulaosmanovic, E.T. Breyer, T. Mikolajick, S. Slesazeck, Ferroelectric FETs with 20-nm-thick HfO2 layer for large memory window and high performance. IEEE Trans. Electron Devices 66(9), 3828–3833 (2019). https://doi.org/10.1109/ted.2019.2930749

    Article  CAS  Google Scholar 

  35. B. Zeng, M. Liao, J. Liao, W. Xiao, Q. Peng, S. Zheng, Y. Zhou, Program/erase cycling degradation mechanism of HfO2-based FeFET memory devices. IEEE Electron Device Lett. 40(5), 710–713 (2019). https://doi.org/10.1109/LED.2019.2908084

    Article  CAS  Google Scholar 

  36. A.J. Tan, Y.-H. Liao, L.-C. Wang, N. Shanker, J.-H. Bae, C. Hu, S. Salahuddin, Ferroelectric HfO2 memory transistors with high- κ interfacial layer and write endurance exceeding 10 10 cycles. IEEE Electron Device Lett. 42(7), 994–997 (2021). https://doi.org/10.1109/LED.2021.3083219

    Article  CAS  Google Scholar 

  37. IEEE, International Roadmap for Devices and Systems (IRDS) 2020—Beyond CMOS (2020)

  38. S. Salahuddin, K. Ni, S. Datta, The era of hyper-scaling in electronics. Nat. Electron. 1(8), 442–450 (2018). https://doi.org/10.1038/s41928-018-0117-x

    Article  Google Scholar 

  39. E. Yurchuk, S. Mueller, D. Martin, S. Slesazeck, U. Schroeder, T. Mikolajick, J. Muller, J. Paul, R. Hoffmann, J. Sundqvist, T. Schlosser, R. Boschke, R. Van Bentum, M. Trentzsch, Origin of the endurance degradation in the novel HfO2-based 1T ferroelectric non-volatile memories. in IEEE International Reliability Physics Symposium (IRPS), 2014, pp. 2E.5.1–2E.5.5. https://doi.org/10.1109/IRPS.2014.6860603

  40. N. Gong, T.P. Ma, A study of endurance issues in HfO2-based ferroelectric field effect transistors: charge trapping and trap generation. IEEE Electron Device Lett. 39(1), 15–18 (2018). https://doi.org/10.1109/LED.2017.2776263

    Article  CAS  Google Scholar 

  41. S. Deng, Z. Liu, X. Li, T.P. Ma, K. Ni, Guidelines for ferroelectric FET reliability optimization: charge matching. IEEE Electron Device Lett. 41(9), 1348–1351 (2020). https://doi.org/10.1109/LED.2020.3011037

    Article  CAS  Google Scholar 

  42. W. Wei, W. Zhang, F. Wang, X. Ma, Q. Wang, P. Sang, X. Zhan, Y. Li, L. Tai, Q. Luo, H. Lv, J. Chen, Deep insights into the failure mechanisms in field-cycled ferroelectric Hf 0.5 Zr 0.5 O2 thin film: TDDB characterizations and first-principles calculations. in IEEE International Electron Devices Meeting (IEDM), 2020, pp. 39.6.1–39.6.4. https://doi.org/10.1109/IEDM13553.2020.9371932

  43. Y. Chen, C. Su, T. Yang, C. Hu, T.-L. Wu, Improved TDDB reliability and interface states in 5-nm Hf 0.5 Zr 0.5 O 2 ferroelectric technologies using NH3 plasma and microwave annealing. IEEE Trans. Electron Devices 67(4), 1581–1585 (2020). https://doi.org/10.1109/TED.2020.2973652

    Article  CAS  Google Scholar 

  44. M. Si, P.D. Ye, The critical role of charge balance on the memory characteristics of ferroelectric field-effect transistors, arXiv, pp. 1–6 (2021)

  45. M.A. Alam, A critical examination of the mechanics of dynamic NBTI for PMOSFETs. in Technical Digest—International Electron Devices Meeting, 2003, pp. 345–348. https://doi.org/10.1109/iedm.2003.1269295

  46. K. Karda, C. Mouli, M.A. Alam, Design principles of self-compensated NBTI-free negative capacitor FinFET. IEEE Trans. Electron Devices 67(6), 2238–2242 (2020). https://doi.org/10.1109/TED.2020.2983634

    Article  CAS  Google Scholar 

  47. T. Rollo, D. Esseni, Influence of interface traps on ferroelectric NC-FETs. IEEE Electron Device Lett. 39(7), 1100–1103 (2018). https://doi.org/10.1109/LED.2018.2842087

    Article  CAS  Google Scholar 

  48. O. Prakash, A. Gupta, G. Pahwa, J. Henkel, Y.S. Chauhan, H. Amrouch, Impact of interface traps on negative capacitance transistor: device and circuit reliability. IEEE J. Electron Devices Soc. 8, 1193–1201 (2020). https://doi.org/10.1109/JEDS.2020.3022180

    Article  CAS  Google Scholar 

  49. K. Chatterjee, A.J. Rosner, S. Salahuddin, Intrinsic speed limit of negative capacitance transistors. IEEE Electron Device Lett. 38(9), 1328–1330 (2017). https://doi.org/10.1109/LED.2017.2731343

    Article  CAS  Google Scholar 

  50. K. Florent, S. Lavizzari, L. Di Piazza, M. Popovici, J. Duan, G. Groeseneken, J. Van Houdt, Reliability study of ferroelectric Al:HfO2 thin films for DRAM and NAND applications. IEEE Trans. Electron Devices 64(10), 4091–4098 (2017). https://doi.org/10.1109/TED.2017.2742549

    Article  CAS  Google Scholar 

  51. Y.S. Liu, P. Su, Variability analysis for ferroelectric FET nonvolatile memories considering random ferroelectric-dielectric phase distribution. IEEE Electron Device Lett. 41(3), 369–372 (2020). https://doi.org/10.1109/LED.2020.2967423

    Article  CAS  Google Scholar 

  52. L. Grenouillet, T. Francois, J. Coignus, S. Kerdiles, N. Vaxelaire, C. Carabasse, F. Mehmood, S. Chevalliez, C. Pellissier, F. Triozon, F. Mazen, G. Rodriguez, T. Magis, V. Havel, S. Slesazeck, F. Gaillard, U. Schroeder, T. Mikolajick, E. Nowak, Nanosecond Laser Anneal (NLA) for Si-implanted HfO2 ferroelectric memories integrated in Back-End of Line (BEOL). in VLSI Technology Symposium, 2020, pp. TF2.3–TF2.4. https://doi.org/10.1109/VLSITechnology18217.2020.9265061

  53. K. Florent, A. Subirats, S. Lavizzari, R. Degraeve, U. Celano, B. Kaczer, L. Di Piazza, M. Popovici, G. Groeseneken, J. Van Houdt, Investigation of the endurance of FE-HfO2 devices by means of TDDB studies. in IEEE International Reliability Physics Symposium Proceedings, 2018, vol. 2018, pp. 6D.31–6D.37. https://doi.org/10.1109/IRPS.2018.8353634

  54. M. A. Alam, B. Weir, J. Bude, P. Silverman, D. Monroe, Explanation of soft and hard breakdown and its consequences for area scaling. in IEEE International Electron Devices Meeting (IEDM), 1999, pp. 449–452. https://doi.org/10.1109/iedm.1999.824190

  55. M.A. Alam, R.K. Smith, B.E. Weir, P.J. Silverman, Uncorrelated breakdown of integrated circuits. Nature 420(6914), 378–378 (2002). https://doi.org/10.1038/420378a

    Article  CAS  Google Scholar 

  56. M.A. Alam, R.K. Smith, A phenomenological theory of correlated multiple soft-breakdown events in ultra-thin gate dielectrics. in IEEE International Reliability Physics Symposium (IRPS), 2003, vol. 2003, pp. 406–411. https://doi.org/10.1109/RELPHY.2003.1197782

  57. E. Yurchuk, J. Muller, S. Muller, J. Paul, M. Pesic, R. Van Bentum, U. Schroeder, T. Mikolajick, Charge-trapping phenomena in HfO2-based FeFET-type nonvolatile memories. IEEE Trans. Electron Devices 63(9), 3501–3507 (2016). https://doi.org/10.1109/TED.2016.2588439

    Article  CAS  Google Scholar 

  58. A.I. Khan, U. Radhakrishna, K. Chatterjee, S. Salahuddin, D.A. Antoniadis, Negative capacitance behavior in a leaky ferroelectric. IEEE Trans. Electron Devices 63(11), 4416–4422 (2016). https://doi.org/10.1109/TED.2016.2612656

    Article  Google Scholar 

  59. A.J. Tan, M. Pesic, L. Larcher, Y.H. Liao, L.C. Wang, J.H. Bae, C. Hu, S. Salahuddin, Hot electrons as the dominant source of degradation for sub-5nm HZO FeFETs. in VLSI Technology Symposium, 2020, pp. 2020–2021. https://doi.org/10.1109/VLSITechnology18217.2020.9265067

  60. H. Mulaosmanovic, E.T. Breyer, T. Mikolajick, S. Slesazeck, Recovery of cycling endurance failure in ferroelectric FETs by self-heating. IEEE Electron Device Lett. 40(2), 216–219 (2019). https://doi.org/10.1109/LED.2018.2889412

    Article  CAS  Google Scholar 

  61. O. Prakash, G. Pahwa, C.K. Dabhi, Y.S. Chauhan, H. Amrouch, Impact of self-heating on negative-capacitance FinFET: device-circuit interaction. IEEE Trans. Electron Devices 68(4), 1420–1424 (2021). https://doi.org/10.1109/TED.2021.3059180

    Article  CAS  Google Scholar 

  62. K.-Y. Chen, Y.-S. Tsai, Y.-H. Wu, Ionizing radiation effect on memory characteristics for HfO2-based ferroelectric field-effect transistors. IEEE Electron Device Lett. 40(9), 1370–1373 (2019). https://doi.org/10.1109/led.2019.2931826

    Article  CAS  Google Scholar 

  63. G. Bajpai, A. Gupta, O. Prakash, G. Pahwa, J. Henkel, Y.S. Chauhan, H. Amrouch, Impact of radiation on negative capacitance FinFET, in IEEE Int. Reliab. Phys. Symp. Proc., vol. 2020, pp. 6–10, 2020. https://doi.org/10.1109/IRPS45951.2020.9129165.

  64. A. Gupta, G. Bajpai, P. Singhal, N. Bagga, O. Prakash, S. Banchhor, H. Amrouch, N. Chauhan, Traps based reliability barrier on performance and revealing early ageing in negative capacitance FET. in IEEE Int. Reliab. Phys. Symp. Proc., vol. 2021, pp. 21–26, 2021. https://doi.org/10.1109/IRPS46558.2021.9405185

  65. P. Chandra, P.B. Littlewood, A landau primer for ferroelectrics, in Physics of ferroelectrics—a modern perspective, vol. 105, 1st edn., ed. by K.M. Rabe, C.H. Ahn, J.-M. Triscone (Springer, New York, 2007), pp. 69–116

    Chapter  Google Scholar 

  66. M. Hoffmann, S. Slesazeck, T. Mikolajick, C.S. Hwang, Negative capacitance in HfO2- and ZrO2-based ferroelectrics. Ferroelectr. Doped Hafnium Oxide Mater. Prop. Devices, pp. 473–493, 2019. https://doi.org/10.1016/B978-0-08-102430-0.00023-1

  67. J.C. Wong, S. Salahuddin, Negative capacitance transistors. Proc. IEEE 107(1), 49–62 (2019). https://doi.org/10.1109/JPROC.2018.2884518

    Article  CAS  Google Scholar 

  68. A.I. Khan, K. Chatterjee, B. Wang, S. Drapcho, L. You, C. Serrao, S.R. Bakaul, R. Ramesh, S. Salahuddin, Negative capacitance in a ferroelectric capacitor. Nat. Mater. 14(2), 182–186 (2015). https://doi.org/10.1038/nmat4148

    Article  CAS  Google Scholar 

  69. C. Jin, T. Saraya, T. Hiramoto, M. Kobayashi, On the physical mechanism of transient negative capacitance effect in deep subthreshold region. IEEE J. Electron Devices Soc. 7, 369–374 (2019). https://doi.org/10.1109/JEDS.2019.2899727

    Article  Google Scholar 

  70. A.K. Saha, P. Sharma, I. Dabo, S.K. Gupta, Ferroelectric transistor model based on self-consistent solution of 2D Poisson’s, non equilibrium Green’s function and multi-domain Landau Khalatnikov equations. in IEEE International Electron Devices Meeting (IEDM), 2017, pp. 326–329. ISBN: 9781538635599

  71. H. Mulaosmanovic, J. Ocker, S. Müller, U. Schroeder, J. Müller, P. Polakowski, S. Flachowsky, R. van Bentum, T. Mikolajick, S. Slesazeck, Switching kinetics in nanoscale hafnium oxide based ferroelectric field-effect transistors. ACS Appl. Mater. Interfaces 9(4), 3792–3798 (2017). https://doi.org/10.1021/acsami.6b13866

    Article  CAS  Google Scholar 

  72. M.-Y.Y. Kao, A.B. Sachid, Y.-K.K. Lin, Y.-H.H. Liao, H. Agarwal, P. Kushwaha, J.P. Duarte, H.-L.L. Chang, S. Salahuddin, C. Hu, Variation caused by spatial distribution of dielectric and ferroelectric grains in a negative capacitance field-effect transistor. IEEE Trans. Electron Devices 65(10), 4652–4658 (2018). https://doi.org/10.1109/TED.2018.2864971

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Francesco Maria Puglisi, Prof. Paolo Pavan (University of Modena), and Dr. Muhammad Masuduzzaman (Sandisk) and Dr. Kamal Karda (Purdue University and Micron Technology) for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicolò Zagni or Muhammad Ashraful Alam.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest for this research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zagni, N., Alam, M.A. Reliability physics of ferroelectric/negative capacitance transistors for memory/logic applications: An integrative perspective. Journal of Materials Research 36, 4908–4918 (2021). https://doi.org/10.1557/s43578-021-00420-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00420-1

Keywords

Navigation