Skip to main content

Advertisement

Log in

Design and manufacturing of biomimetic porous metal implants

  • Article
  • Focus Issue: 3D Printing of Biomedical Materials and Devices
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The stress-shielding effect can be minimized by using porous materials with pre-determined implant stiffness. This study aims to design interconnected porous metal implants that resemble the stiffness variations in a bone. Our design is intended to innovate mechanical loading conditions at the peri-implant bone, promoting a more robust implant–bone interface. The positional variations of stiffness in the scaffold are designed based on the Hounsfield Unit of computed tomography (CT) scan data of that location. Finite element (FE) analysis evaluates porous implants' performance compared to solid implants. Porous metal implants were additively manufactured with Ti6Al4V for compression test and reconstructed the 3D model from the micro-CT scan to validate the FE model. FE results revealed that porous implants generated a strain profile at peri-implant bone closer to normal bone irrespective of material property or anatomical location compared to solid implants.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. H. Shegarfi, O. Reikeras, Bone transplantation and immune response. J. Orthopaedic Surg. 17(2), 206–211 (2009)

    Article  Google Scholar 

  2. P. Lichte, H.C. Pape, T. Pufe, P. Kobbe, H. Fischer, Scaffolds for bone healing: concepts, materials, and evidence. Injury 42(6), 569–573 (2011)

    Article  CAS  Google Scholar 

  3. N.E. Putra, M.J. Mirzaali, I. Apachitei, J. Zhou, A.A. Zadpoor, Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution. Acta Biomater. 109, 1–20 (2020)

    Article  CAS  Google Scholar 

  4. M. Kaur, K. Singh, Review on titanium and titanium-based alloys as biomaterials for orthopedic applications. Mater. Sci. Eng. C 102, 844–862 (2019)

    Article  CAS  Google Scholar 

  5. S. Chatterjee, S. Dey, S. Majumder, A. Roy Chowdhury, S. Datta, Computational intelligence based design of implant for varying bone conditions. Int. J. Numer. Methods Biomed. Eng. 35(6), e3191 (2019). https://doi.org/10.1002/cnm.3191

    Article  Google Scholar 

  6. X.P. Tan, Y.J. Tan, C.S.L. Chow, Tor, SB, and Yeong, WY, Metallic powder-bed based 3D printing of cellular scaffolds for orthopedic implants: a state-of-the-art review on manufacturing, topological design, mechanical properties, and biocompatibility. Mater. Sci. Eng. C 76, 1328–1343 (2017)

    Article  CAS  Google Scholar 

  7. B.V. Krishna, W. Xue, S. Bose, A. Bandyopadhyay, Engineered porous metals for implants. JOM 60(5), 45–48 (2008)

    Article  CAS  Google Scholar 

  8. S. Gómez, M.D. Vlad, J. López, E. Fernández, Design and properties of 3D scaffolds for bone tissue engineering. Acta Biomater. 42, 341–350 (2016)

    Article  Google Scholar 

  9. H. Montazerian, E. Davoodi, M. Asadi-Eydivand, J. Kadkhodapour, M. Solati-Hashjin, Porous scaffold internal architecture design based on minimal surfaces: a compromise between permeability and elastic properties. Mat. Des. 126, 98–114 (2017)

    CAS  Google Scholar 

  10. D. Ali, M. Ozalp, S.B. Blanquer, S. Onel, Permeability and fluid flow-induced wall shear stress in bone scaffolds with TPMS and lattice architectures: a CFD analysis. Eur. J. Mech. B-Fluids 79, 376–385 (2019)

    Article  Google Scholar 

  11. S. Bose, D. Banerjee, A. Shivaram, S. Tarafder, A. Bandyopadhyay, Calcium phosphate coated 3D printed porous titanium with nanoscale surface modification for orthopedic and dental applications. Mater. Des. 151, 102–112 (2018)

    Article  CAS  Google Scholar 

  12. S. Bose, M. Roy, A. Bandyopadhyay, Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 30(10), 546–554 (2012)

    Article  CAS  Google Scholar 

  13. A. Ataee, Y. Li, D. Fraser, G. Song, C. Wen, Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications. Mater. Des. 137, 345–354 (2018)

    Article  CAS  Google Scholar 

  14. J. Markhoff, J. Wieding, V. Weissmann, J. Pasold, A. Jonitz-Heincke, R. Bader, Influence of different three-dimensional open porous titanium scaffold designs on human osteoblasts behavior in static and dynamic cell investigations. Materials 8(8), 5490–5507 (2015)

    Article  CAS  Google Scholar 

  15. J.E. Biemond, R. Aquarius, N. Verdonschot, P. Buma, Frictional and bone ingrowth properties of engineered surface topographies produced by electron beam technology. Arch. Orthop. Trauma Surg. 131(5), 711–718 (2011)

    Article  Google Scholar 

  16. S. Ghouse, N. Reznikov, O.R. Boughton, S. Babu, K.G. Ng, G. Blunn, J.P. Cobb, M.M. Stevens, J.R. Jeffers, The design and in vivo testing of a locally stiffness-matched porous scaffold. Appl. Mater. Today 15, 377–388 (2019)

    Article  Google Scholar 

  17. M.J. Ciarelli, S.A. Goldstein, J.L. Kuhn, D.D. Cody, M.B. Brown, Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography. J. Orthop. Res. 9, 674–682 (1991)

    Article  CAS  Google Scholar 

  18. Rho, J. Y., Hobatho, M. C., and Ashman, R. B., Anatomical variation of mechanical properties of human cortical bone. In: Hochmuth, R. M., Langrana, N. A., and Hefzy, M. S., Eds. Bioeng. Conf., ASME, Vol. BED-29. Beaver Creek, CO; 1995; 239–240.

  19. M. Amling, S. Herden, M. Posl, M. Hahn, H. Ritzel, G. Delling, Heterogeneity of the skeleton: comparison of the trabecular microarchitecture of the spine, the iliac crest, the femur, and the calcaneus. J. Bone Miner. Res. 11, 36–45 (1996)

    Article  CAS  Google Scholar 

  20. S. Roy, M. Das, P. Chakraborty, J.K. Biswas, S. Chatterjee, N. Khutia, S. Saha, A. RoyChowdhury, Optimal selection of dental implant for different bone conditions based on the mechanical response. Acta Bioeng Biomech 19(2), 11–20 (2017)

    Google Scholar 

  21. A. Berner, M.A. Woodruff, C.X.F. Lam, M.T. Arafat, S. Saifzadeh, R. Steck, J. Ren, M. Nerlich, A.K. Ekaputra, I. Gibson, D.W. Hutmacher, Effects of scaffold architecture on cranial bone healing. Int. J. Oral Maxillofac. Surg. 43(4), 506–513 (2014)

    Article  CAS  Google Scholar 

  22. J. Kadkhodapour, H. Montazerian, A.C. Darabi, A.P. Anaraki, S.M. Ahmadi, A.A. Zadpoor, S. Schmauder, Failure mechanisms of additively manufactured porous biomaterials: effects of porosity and type of unit cell. J. Mech. Behav. Biomed. Mater. 50, 180–191 (2015)

    Article  CAS  Google Scholar 

  23. S. Roy, S. Dey, N. Khutia, A.R. Chowdhury, S. Datta, Design of patient-specific dental implant using FE analysis and computational intelligence techniques. Appl. Soft Comput. 65, 272–279 (2018)

    Article  Google Scholar 

  24. A. Entezari, Z. Zhang, A. Sue, G. Sun, X. Huo, C.C. Chang, S. Zhou, M.V. Swain, Q. Li, Nondestructive characterization of bone tissue scaffolds for clinical scenarios. J. Mech. Behav. Biomed. Mater. 89, 150–161 (2019)

    Article  CAS  Google Scholar 

  25. R.L. Austman, J.S. Milner, D.W. Holdsworth, C.E. Dunning, The effect of the density–modulus relationship selected to apply material properties in a finite element model of long bone. J. Biomech. 41(15), 3171–3176 (2008)

    Article  Google Scholar 

  26. J.K. Biswas, M. Rana, S. Majumder, S.K. Karmakar, A. Roychowdhury, Effect of two-level pedicle-screw fixation with different rod materials on lumbar spine: a finite element study. J. Orthop. Sci. 23(2), 258–265 (2018)

    Article  Google Scholar 

  27. C.A. McCarty, J.J. Thomason, K.D. Gordon, T.A. Burkhart, J.S. Milner, D.W. Holdsworth, Finite-element analysis of bone stresses on primary impact in a large-animal model: the distal end of the equine third metacarpal. PLoS ONE 11(7), e0159541 (2016)

    Article  Google Scholar 

  28. S. Roy, M. Das, P. Chakraborty, J.K. Biswas, S. Chatterjee, N. Khutia, S. Saha, A. RoyChowdhury, Optimal selection of dental implant for different bone conditions based on the mechanical response. Acta Bioeng. Biomech. 19(2), 11–20 (2017)

    Google Scholar 

  29. V. Filardi, R. Montanini, Measurement of local strains induced into the femur by trochanteric Gamma nail implants with one or two distal screws. Med. Eng. Phys. 29(1), 38–47 (2007)

    Article  Google Scholar 

  30. B. Pal, S. Gupta, A.M. New, M. Browne, Strain and micromotion in intact and resurfaced composite femurs: experimental and numerical investigations. J. Biomech. 43(10), 1923–1930 (2010)

    Article  Google Scholar 

  31. M. Marco, E. Giner, R. Larraínzar-Garijo, J.R. Caeiro, M.H. Miguélez, Modelling of femur fracture using finite element procedures. Eng. Fract. Mech. 196, 157–167 (2018)

    Article  Google Scholar 

  32. Gibson, L., & Ashby, in Cellular Solids: Structure and Properties (Cambridge Solid State Science Series, 1999), pp. 175–234. https://doi.org/10.1017/CBO9781139878326.007

  33. Heinl, P., Körner, C., and Singer, RF, Selective electron beam melting of cellular titanium: mechanical properties. Adv. Eng. Mater. 10(9), 882–888 (2008).

  34. S. Roy, N. Khutia, D. Das, M. Das, V.K. Balla, A. Bandyopadhyay, A.R. Chowdhury, Understanding compressive deformation behavior of porous Ti using finite element analysis. Mater. Sci. Eng. C 64, 436–443 (2016)

    Article  CAS  Google Scholar 

  35. L. Wang, J. Kang, C. Sun, D. Li, Y. Cao, Z. Jin, Mapping porous microstructures to yield desired mechanical properties for application in 3D printed bone scaffolds and orthopedic implants. Mater. Des. 133, 62–68 (2017)

    Article  CAS  Google Scholar 

  36. J. Parthasarathy, B. Starly, S. Raman, A. Christensen, Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J. Mech. Behav. Biomed. Mater. 3(3), 249–259 (2010)

    Article  Google Scholar 

  37. J.K. Biswas, T.P. Sahu, M. Rana, S. Roy, S.K. Karmakar, S. Majumder, A. Roychowdhury, Design factors of lumbar pedicle screws under bending load: A finite element analysis. Biocybern. Biomed. Eng. 39(1), 52–62 (2019)

    Article  Google Scholar 

  38. Y. Liu, K. Li, T. Luo, M. Song, H. Wu, J. Xiao, Y. Tan, M. Cheng, B. Chen, X. Niu, R. Hu, Powder metallurgical low-modulus Ti–Mg alloys for biomedical applications. Mater. Sci. Eng. C 56, 241–250 (2015)

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amit Roychowdhury or Amit Bandyopadhyay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Amit Bandyopadhyay was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 12 kb)

43578_2021_307_MOESM2_ESM.jpg

Supplementary file 2 (JPG 615 kb) Fig. 11: von Mises stress (MPa) distribution on the peri-implant bone of greater trochanter for (a) natural model, (b) solid implant, (c) porous Ti6Al4V, (d) porous Ti-Mg, (e) reconstructed model

43578_2021_307_MOESM3_ESM.jpg

Supplementary file 3 (JPG 625 kb) Fig. 12: von Mises stress distribution (MPa) on the peri-implant bone of diaphysis for (a) natural model, (b) solid implant, (c) porous Ti6Al4V, (d) porous Ti-Mg, (e) reconstructed model

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, M., Karmakar, S.K., Pal, B. et al. Design and manufacturing of biomimetic porous metal implants. Journal of Materials Research 36, 3952–3962 (2021). https://doi.org/10.1557/s43578-021-00307-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00307-1

Keywords

Navigation