Skip to main content
Log in

Chemical stability and oxygen transport properties of La1−xCaxFe1−yByO3−δ (with B  = Co, Ni, Mg) perovskite membranes

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The mixed conductive perovskite La1−xCaxFeO3−δ (LCF) exhibits high oxygen permeability. For further improvement of the oxygen permeability as well as the chemical stability, this study investigates the impact of the doping elements on the perovskite B-site. The cobalt (Co) doping of the LCF improved both the oxygen diffusion and the oxygen surface exchange. However, the oxygen semi-permeation flux of the Co-doped LCF sample was not stable at high temperatures under the high oxygen partial pressure difference (air/argon). The magnesium (Mg) doping in the B-site significantly improved the chemical stability of the LCF membranes, with the oxygen semi-permeation performances close to those obtained with the Co-doped LCF membranes. Thus, the Mg-doped LCF presented the best compromise between chemical stability and oxygen semi-permeation performance, which is applicable to the oxygen transport membranes or the cathodes in solid oxide fuel cells.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the second author or the corresponding author on reasonable request.

References

  1. J.Y. Kim, V.L. Sprenkle, N.L. Canfield, K.D. Meinhardt, L.A. Chick, Effects of chrome contamination on the performance of La0.6Sr0.4Co0.2Fe0.8O3 cathode used in solid oxide fuel cells. J. Electrochem. Soc. 153, A880–A886 (2006)

    Article  CAS  Google Scholar 

  2. S. Hashimoto, Y. Fukuda, M. Kuhn, K. Sato, K. Yashiro, J. Mizusaki, Thermal and chemical lattice expansibility of La0.6Sr0.4Co1−yFeyO3−δ (y = 0.2, 0.4, 0.6, and 0.8). Solid State Ion. 186, 37–43 (2011)

    Article  CAS  Google Scholar 

  3. K. Efimov, T. Halfer, A. Kuhn, P. Heitjans, J. Caro, A. Feldhoff, Novel cobalt-free oxygen-permeable perovskite-type membrane. Chem. Mater. 22, 1540–1544 (2010)

    Article  CAS  Google Scholar 

  4. X. Chen, H. Liu, Y. Wie, J. Caro, H.H. Wang, A novel zincum-doped perovskite-type ceramic membrane for oxygen separation. J. Alloy. Compd. 484, 386–389 (2009)

    Article  CAS  Google Scholar 

  5. M. Balaguer, S. Escolastico, J.M. Serra, Oxygen permeation and stability of CaTi0.73Fe0.18Mg0.09O3−δ oxygen-transport membrane. J. Membr. Sci. 524, 56–63 (2017)

    Article  CAS  Google Scholar 

  6. X. Bi, X. Meng, P. Liu, N. Yang, Z. Zhu, R. Ran, S. Liu, A novel CO2-resistant ceramic dual-phase hollow fiber membrane for oxygen separation. J. Membr. Sci. 522, 91–99 (2017)

    Article  CAS  Google Scholar 

  7. G. Chen, Z. Zhao, M. Widenmeyer, R. Yan, L. Wang, A. Feldhoff, A. Weidenkaff, Synthesis and characterization of 40 wt% Ce0.9Pr0.1O2–δ–60 wt% NdxSr1−xFe0.9Cu0.1O3−δ dual-phase membranes for efficient oxygen separation. Membranes 10, 183 (2020)

    Article  CAS  Google Scholar 

  8. S. Diethelm, J. Van Herle, P.H. Middleton, D. Favrat, Oxygen permeation and stability of La0.4Ca0.6Fe1−xCoxO3−δ (x = 0, 0.25, 0.5) membranes. J. Power Sources 118(2), 270–275 (2003)

    Article  CAS  Google Scholar 

  9. D. Yang, N. Yang, B. Meng, X. Tan, C. Zhang, J. Sunars, Z. Zhu, S. Liu, A-site excess (La0.8Ca0.2)1.01FeO3−δ (LCF) perovskite hollow fiber membrane for oxygen permeation in CO2-containing atmosphere. Energy Fuels 31, 4531–4538 (2017)

    Article  CAS  Google Scholar 

  10. I. Kagomiya, T. Murayama, K. Tsunekawa, K.-I. Kakimoto, Y. Ogura, Crystalline phase and oxygen permeation properties of mixed conductive. J. Euro. Cerm. Soc. 39, 1082–1092 (2019)

    Article  CAS  Google Scholar 

  11. I. Kagomiya, T. Takahashi, K. Kakimoto, Oxide ion conduction and surface exchange reactions of mixed conductive La0.65Ca0.35FeO3−δ based on oxygen permeation study. Chem. Mater. 31, 10135–10142 (2019)

    Article  CAS  Google Scholar 

  12. Y. Yamaguchi, I. Kagomiya, S. Minami, H. Shimada, H. Sumi, Y. Ogura, Y. Mizutani, La0.65Ca0.35FeO3−δ as a novel Sr- and Co-free cathode material for solid oxide fuel cells. J. Power Sources 448, 227426 (2020)

    Article  CAS  Google Scholar 

  13. X. Zhu, C. Shi, K. Li, K. Zhai, H. Wang, Y. Wei, D. Tian, C. Zeng, Water splitting for hydrogen generation over lanthanum-calcium-iron perovskite-type membrane driven by reducing atmosphere. Int. J. Hydrogen Energy 42(31), 19776–19787 (2017)

    Article  CAS  Google Scholar 

  14. R.J.D. Tilley, Perovskites: Structure-Property Relationships (Wiley, Hoboken, 2016), pp. 1–41

    Google Scholar 

  15. M.-H. Hung, M.V.M. Rao, D.-S. Tsai, Microstructures and electrical properties of calcium substituted LaFeO3 as SOFC cathode. Mater. Chem. Phys. 101(2–3), 297–302 (2007)

    Article  CAS  Google Scholar 

  16. P.M. Price, D.P. Butt, Stability and decomposition of Ca substituted lanthanum ferrite in reducing atmospheres. J. Am. Ceram. Soc. 98, 2881–2886 (2015)

    Article  CAS  Google Scholar 

  17. P.M. Price, E. Rabenberg, D. Thomsen, S.T. Misture, D.P. Butt, Phase transformations in calcium-substituted lanthanum ferrite. J. Am. Ceram. Soc. 97, 2241–2245 (2014)

    Article  CAS  Google Scholar 

  18. R.D. Shanon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751–767 (1976)

    Article  Google Scholar 

  19. P.-M. Geffroy, A. Vivet, J. Fouletier, C. Steil, E. Blond, N. Richet, P. Del Gallo, T. Chartier, The impact of experimental factors on oxygen semi-permeation measurements. J. Electrochem. Soc. 160(1), F1–F9 (2013)

    Article  Google Scholar 

  20. P.-M. Geffroy, E. Blond, N. Richet, T. Chartier, Understanding and identifying the oxygen transport mechanisms through mixed-conductor membranes. Chem. Eng. Sci. 162, 245–261 (2017)

    Article  CAS  Google Scholar 

  21. C. Berger, E. Bucher, A. Windischbacher, A. DanielBoese, W. Sitte, Strontium-free rare earth perovskite ferrites with fast oxygen kinetics: experiment and theory. J. Sol. Stat. Chem. 259, 57–66 (2018)

    Article  CAS  Google Scholar 

  22. C. Salles, J.M. Bassat, J. Fouletier, D. Marinha, M.-C. Steil, Oxygen pressure dependence of the ionic conductivity of iron-doped calcium titanate. Solid State Ionics 324, 103–108 (2018)

    Article  CAS  Google Scholar 

  23. D. Kim, J. Wan Park, B.-H. Yun, J. Hwa Park, K.T. Lee, Correlation of time-dependent oxygen surface exchange kinetics with surface chemistry of La0.6Sr0.4Co0.2Fe0.8O3−δ catalysts. ACS Appl. Mater. Interfaces 11(35), 31786–31792 (2019)

    Article  CAS  Google Scholar 

  24. M.P. Pechini, U.S. Patent #3330697, (1967)

  25. M.Z. Bazant, Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. Acc. Chem. Res. 46(5), 1144–1160 (2013)

    Article  CAS  Google Scholar 

  26. S.B. Adler, X.Y. Chen, J.R. Wilson, Mechanisms and rate laws for oxygen exchange on mixed-conducting oxide surfaces. J. Catal. 245, 91–109 (2007)

    Article  CAS  Google Scholar 

  27. V.V. Kharton, A.V. Kovalevsky, M.V. Patrakeev, E.V. Tsipis, A.P. Viskup, V.A. Kolotygin, A.A. Yaremchenko, A.L. Shaula, E.A. Kiselev, J.C. Waerenborgh, Oxygen nonstoichiometry, mixed conductivity, and Mössbauer spectra of Ln0.5A0.5FeO3−δ (Ln = La-Sm, A = Sr, Ba): effects of cation size. Chem. Mater. 20, 6457–6467 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Nagoya Kougyoukai and funds from JSPS KAKENHI Grant Number: 17H03391.

Funding

This work was partially supported by Nagoya Kougyoukai and funds from JSPS KAKENHI Grant Number: 17H03391.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isao Kagomiya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minami, S., Geffroy, PM., Kagomiya, I. et al. Chemical stability and oxygen transport properties of La1−xCaxFe1−yByO3−δ (with B  = Co, Ni, Mg) perovskite membranes. Journal of Materials Research 36, 1241–1249 (2021). https://doi.org/10.1557/s43578-021-00212-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00212-7

Keywords

Navigation