Skip to main content
Log in

DFT study on the controllable electronic and optical properties of GaSb/InAs heterostructure

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

By stacking layers with layers, heterojunction provides a new approach to improve the electronic and optical properties of two-dimensional materials. In this work, by means of density functional theory (DFT), the structural configurations, electronic and optical properties of two-dimensional GaSb/InAs vertical heterostructure (HTS) were systematically studied. The results show that the stability of ABII-stacking with the interlayer spacing of 2.5 Å (h2.5-ABII model) is better than other heterogeneous models, and charge transfer occurs between GaSb and InAs slabs. The band structure of GaSb/InAs HTS is sensitive to the changes of stacking configuration, interlayer spacing, and external strain, as well as electric field. Under in-plane strains, the band gap of GaSb/InAs HTS undergoes direct–indirect transition, which has not been observed under the conditions of electric field. Moreover, the ultraviolet absorption capacity of GaSb/InAs HTS was significantly enhanced compared with that of free-standing monolayers. Overall, the controllable electronic structure and optical properties illustrate that GaSb/InAs HTS can be a good candidate for optoelectronic devices.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to legal or ethical reasons.

References

  1. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)

    Article  CAS  Google Scholar 

  2. F. Schwierz, J. Pezoldt, R. Granzner, Two-dimensional materials and their prospects in transistor electronics. Nanoscale. 7, 8261–8283 (2015)

    Article  CAS  Google Scholar 

  3. K.D. Pham, C.V. Nguyen, First principles calculations of the geometric structures and electronic properties of van der Waals heterostructure based on graphene, hexagonal boron nitride and molybdenum diselenide. Diam. Relat. Mater. 88, 151–157 (2018)

    Article  CAS  Google Scholar 

  4. H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P.D. Ye, Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014)

    Article  CAS  Google Scholar 

  5. L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson, P.M. Ajayan, Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano. Lett. 10, 3209–3215 (2010)

    Article  CAS  Google Scholar 

  6. Y. Zhang, M. Zhang, Y. Zhou, J. Zhao, S. Fang, F. Li, Tunable electronic and magnetic properties of graphene-like ZnO monolayer upon doping and CO adsorption: a first-principles study. J. Mater. Chem. A. 2, 13129–13135 (2014)

    Article  CAS  Google Scholar 

  7. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)

    Article  CAS  Google Scholar 

  8. M. Chhowalla, H.S. Shin, G. Eda, L. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013)

    Article  Google Scholar 

  9. R. Peng, Y. Ma, Z. He, B. Huang, L. Kou, Y. Dai, Single-layer Ag2S: a two-dimensional bidirectional auxetic semiconductor. Nano. Lett. 19, 1227–1233 (2019)

    Article  CAS  Google Scholar 

  10. X. Xu, Y. Ma, B. Huang, Y. Dai, Two-dimensional ferroelastic semiconductors in single-layer indium oxygen halide InOY (Y = Cl/Br). Phys. Chem. Chem. Phys. 21, 7440–7446 (2019)

    Article  CAS  Google Scholar 

  11. L. Liu, H.L. Zhuang, Single-layer ferromagnetic and piezoelectric CoAsS with pentagonal structure. APL. Mater. 7, 011101 (2019)

    Article  Google Scholar 

  12. S.H. Baek, Y. Choi, W. Choi, Large-area growth of uniform single-layer MoS2 thin films by chemical vapor deposition. Nanoscale. Res. Lett. 10, 388 (2015)

    Article  Google Scholar 

  13. C. Kamal, M. Ezawa, Arsenene: two-dimensional buckled and puckered honeycomb arsenic systems. Phys. Rev. B. 91, 085423 (2015)

    Article  Google Scholar 

  14. P. Niu, L. Zhang, G. Liu, H. Cheng, Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 22, 4763–4770 (2012)

    Article  CAS  Google Scholar 

  15. C. Li, X. Yan, X. Song, W. Bao, S. Ding, D.W. Zhang, P. Zhou, WSe2/MoS2 and MoTe2/SnSe2 van der Waals heterostructure transistors with different band alignment. Nanotechnol. 28, 415201 (2017)

    Article  Google Scholar 

  16. A.A. Kistanov, Y. Cai, Y. Zhang, S.V. Dmitriev, K. Zhou, Strain and water effects on the electronic structure and chemical activity of in-plane graphene/silicene heterostructure. J. Phys. Condens. Matter. 29, 095302 (2017)

    Article  Google Scholar 

  17. H. Tsai, J. Liou, Y. Wang, C. Chen, Y. Chueh, C. Hsiao, H. Ouyang, W. Woon, J. Liang, Vertical Al2Se3/MoSe2 heterojunction on sapphire synthesized using ion beam. RSC Adv. 7, 10154–10157 (2017)

    Article  CAS  Google Scholar 

  18. L. Fang, Q. Feng, S. Luo, Tunable electronic properties of monolayer MnPSe3/MoTe2 heterostructure: a first principles study. J. Phys. Condens. Matter. 31, 405705 (2019)

    Article  CAS  Google Scholar 

  19. H. Li, Z. Zhou, K. Zhang, H. Wang, Schottky barrier modulation of a GaTe/graphene heterostructure by interlayer distance and perpendicular electric field. Nanotechnology 30, 405207 (2019)

    Article  CAS  Google Scholar 

  20. C. Xia, B. Xue, T. Wang, Y. Peng, Y. Jia, Interlayer coupling effects on Schottky barrier in the arsenene-graphene van der Waals heterostructures. Appl. Phys. Lett. 107, 193107 (2015)

    Article  Google Scholar 

  21. R. Zhang, W. Ji, C. Zhang, S. Li, P. Li, P. Wang, F. Li, M. Ren, Controllable electronic and magnetic properties in two-dimensional germanene heterostructure. Phys. Chem. Chem. Phys. 18, 12169–12174 (2016)

    Article  CAS  Google Scholar 

  22. X. Chen, Q. Yang, R. Meng, J. Jiang, Q. Liang, C. Tan, X. Sun, The electronic and optical properties of novel germanene and antimonene heterostructures. J. Mater. Chem. C. 4, 5434–5441 (2016)

    Article  CAS  Google Scholar 

  23. Y. Luo, S. Zhang, W. Chen, Y. Jia, Interlayer coupling effects on Electronic properties of the phosphorene/h-BN van der Walls heterostructure: a first principles investigation. Phys. B 534, 51–55 (2018)

    Article  CAS  Google Scholar 

  24. C. Ke, W. Tang, J. Zhou, Z. Wu, X. Li, C. Zhang, Y. Wu, W. Yang, J. Kang, Stress engineering on the electronic and spintronic properties for a GaSe/HfSe2 van der Waals heterostructure. Appl. Phys. Express. 12, 031002 (2019)

    Article  Google Scholar 

  25. X. Wang, R. Quhe, W. Cui, Y. Zhi, Y. Huang, Y. An, X. Dai, Y. Tang, W. Chen, Z. Wu, W. Tang, Electric field effects on the electronic and optical properties in C2N/Sb van der Waals heterostructure. Carbon 129, 738–744 (2018)

    Article  CAS  Google Scholar 

  26. D. Benyahia, Ł Kubiszyn, K. Michalczewski, A. Kębłowski, K. Grodecki, P. Martyniuk, Molecular beam epitaxy growth of InAs/AlSb superlattices on GaAs substrates. J. Cryst. Growth. 522, 125–127 (2019)

    Article  CAS  Google Scholar 

  27. Y. Asadi, Z. Nourbakhsh, First principle characterization of structural, electronic, mechanical, thermodynamic, linear and nonlinear optical properties of zinc blende InAs, InSb and their InAsxSb1-x ternary alloys. J. Phys. Chem. Solids. 132, 213–221 (2019)

    Article  CAS  Google Scholar 

  28. Z. Zhou, Y. Xu, R. Hao, B. Tang, Z. Ren, Z. Niu, Long-wavelength light emission from self-assembled heterojunction quantum dots. J. Appl. Phys. 103, 094315 (2008)

    Article  Google Scholar 

  29. F. Ning, D. Wang, L. Tang, Y. Zhang, K. Chen, The effects of the chemical composition and strain on the electronic properties of GaSb/InAs core-shell nanowires. J. Appl. Phys. 116, 094308 (2014)

    Article  Google Scholar 

  30. T. Garwood, N.A. Modine, S. Krishna, Electronic structure modeling of InAs/GaSb superlattices with hybrid density functional theory. Infrared. Phys. Technol. 81, 27–31 (2017)

    Article  CAS  Google Scholar 

  31. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP. Z. Kristallogr. 220, 567–570 (2005)

    Article  CAS  Google Scholar 

  32. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 59, 1758–1775 (1999)

    Article  CAS  Google Scholar 

  33. M. Ernzerhof, G.E. Scuseria, Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 110, 5029–5036 (1999)

    Article  CAS  Google Scholar 

  34. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010)

    Article  Google Scholar 

  35. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)

    Article  CAS  Google Scholar 

  36. B.P. Bahuguna, L.K. Saini, R.O. Sharma, B. Tiwari, Strain and electric field induced metallization in the GaX (X = N, P, As & Sb) monolayer. Physica E 99, 236–243 (2018)

    Article  CAS  Google Scholar 

  37. H. Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R.T. Senger, S. Ciraci, Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations. Phys. Rev. B. 80, 155453 (2009)

    Article  Google Scholar 

  38. J. Hu, G. Ji, X. Ma, H. He, C. Huang, Probing interfacial electronic properties of graphene/CH3NH3PbI3 heterojunctions: a theoretical study. Appl. Surf. Sci. 440, 35–41 (2018)

    Article  CAS  Google Scholar 

  39. J. Li, W. Wei, C. Mu, B. Huang, Y. Dai, Electronic properties of g-C3N4/CdS heterojunction from the first-principles. Physica. E. 103, 459–463 (2018)

    Article  CAS  Google Scholar 

  40. B. Cordero, V. Gómez, A.E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, S. Alvarez, Covalent radii revisited. Dalton Trans. 21, 2832–2838 (2008)

    Article  Google Scholar 

  41. K. Kamiya, N. Umezawa, S. Okada, Energetics and electronic structure of graphene adsorbed on HfO2(111): density functional theory calculations. Phys. Rev. B. 83, 153413 (2011)

    Article  Google Scholar 

  42. X. Chen, X. Sun, D.G. Yang, R. Meng, C. Tan, Q. Yang, Q. Liang, J. Jiang, SiGe/h-BN heterostructure with inspired electronic and optical properties: a first-principles study. J. Mater. Chem. C. 4, 10082–10089 (2016)

    Article  CAS  Google Scholar 

  43. H.L. Zhuang, A.K. Singh, R.G. Hennig, Computational discovery of single-layer III-V materials. Phys. Rev. B. 87, 165415 (2013)

    Article  Google Scholar 

  44. J. Bi, L. Han, Q. Wang, L. Wu, R. Quhe, P. Lu, Thermoelectric properties of two-dimensional hexagonal indium-VA. Chin. Phys. B. 27, 026802 (2018)

    Article  Google Scholar 

  45. T.P. Kaloni, Y.C. Cheng, U. Schwingenschlögl, Hole doped Dirac states in silicene by biaxial tensile strain. J. Appl. Phys. 113, 104305 (2013)

    Article  Google Scholar 

  46. T.P. Kaloni, U. Schwingenschlögl, Stability of germanene under tensile strain. Chem. Phys. Lett. 583, 137–140 (2013)

    Article  CAS  Google Scholar 

  47. S. Zhang, N. Wang, S. Liu, S. Huang, W. Zhou, B. Cai, M. Xie, Q. Yang, X. Chen, H. Zeng, Two-dimensional GeS with tunable electronic properties via external electric field and strain. Nanotechnology 27, 274001 (2016)

    Article  Google Scholar 

  48. L. Huang, J. Li, Tunable electronic structure of black phosphorus/blue phosphorus van der Waals p-n heterostructure. Appl. Phys. Lett. 108, 083101 (2016)

    Article  Google Scholar 

  49. H. Cao, Z. Zhou, X. Zhou, J. Cao, Tunable electronic properties and optical properties of novel stanene/ZnO heterostructure: first-principles calculation. Comp. Mater. Sci. 139, 179–184 (2017)

    Article  CAS  Google Scholar 

  50. X. Lian, M. Niu, Y. Huang, D. Cheng, MoS2-CdS heterojunction with enhanced photocatalytic activity: a first principles study. J. Phys. Chem. Solids. 120, 52–56 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely thank for the Analysis and Testing Fund of Kunming University of Technology (No. 2018M20172130029) and the Key Project of Yunnan Science and Technology Planning (No. 2017FA027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Yang, M., Chen, L. et al. DFT study on the controllable electronic and optical properties of GaSb/InAs heterostructure. Journal of Materials Research 37, 479–489 (2022). https://doi.org/10.1557/s43578-021-00116-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00116-6

Navigation