Skip to main content
Log in

Megalibraries: Supercharged acceleration of materials discovery

  • Review Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Megalibraries are centimeter-scale chips containing millions to billions of individual materials each with an individually addressable position, composition, and size. Megalibraries will accelerate both the synthesis and characterization steps required for new material discoveries. Here, we review the key nanolithography developments that enable megalibrary synthesis and highlight the superior level of synthetic control within individual particles made possible by miniaturizing reactors to the nanoscale and performing chemistry confined to attoliter volumes. Massive parallelization of tip-defined materials synthesis offers control over thousands to millions of unique nanomaterials simultaneously, and then properties of interest can be rapidly screened. Unexplored materials can be readily surveyed and discovered using megalibraries, generating unprecedentedly large amounts of data that can be used to train machine learning algorithms. This approach is poised to revolutionize materials discovery that can be further amplified with highly autonomous design strategies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

Not applicable.

References

  1. E. Danielson, J.H. Golden, E.W. McFarland, C.M. Reaves, W.H. Weinberg, X.D. Wu, Nature 389, 944 (1997)

    CAS  Google Scholar 

  2. P.J. McGinn, ACS Comb. Sci. 21, 501 (2019)

    CAS  Google Scholar 

  3. L. Yang, J.A. Haber, Z. Armstrong, S.J. Yang, K. Kan, L. Zhou, M.H. Richter, C. Roat, N. Wagner, M. Coram, M. Berndl, P. Riley, J.M. Gregoire, Proc. Natl. Acad. Sci. U.S.A. 118, e2106042118 (2021)

    CAS  Google Scholar 

  4. J.J. Hanak, J. Mater. Sci. 5, 964 (1970)

    CAS  Google Scholar 

  5. J.M. Gregoire, L. Zhou, J.A. Haber, Nat. Synth. 2, 493 (2023)

    Google Scholar 

  6. R.D. Piner, J. Zhu, F. Xu, S. Hong, C.A. Mirkin, Science 283, 661 (1999)

    CAS  Google Scholar 

  7. F. Huo, Z. Zheng, G. Zheng, L.R. Giam, H. Zhang, C.A. Mirkin, Science 321, 1658 (2008)

    CAS  Google Scholar 

  8. K.A. Brown, J.L. Hedrick, D.J. Eichelsdoerfer, C.A. Mirkin, ACS Nano 13, 8 (2019)

    CAS  Google Scholar 

  9. C.B. Wahl, M. Aykol, J.H. Swisher, J.H. Montoya, S.K. Suram, C.A. Mirkin, Sci. Adv. 7, eabj5505 (2021)

    CAS  Google Scholar 

  10. G. Liu, S.H. Petrosko, Z. Zheng, C.A. Mirkin, Chem. Rev. 120, 6009 (2020)

    CAS  Google Scholar 

  11. D.J. Eichelsdoerfer, X. Liao, M.D. Cabezas, W. Morris, B. Radha, K.A. Brown, L.R. Giam, A.B. Braunschweig, C.A. Mirkin, Nat. Protoc. 8, 2548 (2013)

    CAS  Google Scholar 

  12. J. Chai, F. Huo, Z. Zheng, L.R. Giam, W. Shim, C.A. Mirkin, Proc. Natl. Acad. Sci. U.S.A. 107, 20202 (2010)

    CAS  Google Scholar 

  13. J.W.M. Crawley, I.E. Gow, N. Lawes, I. Kowalec, L. Kabalan, C.R.A. Catlow, A.J. Logsdail, S.H. Taylor, N.F. Dummer, G.J. Hutchings, Chem. Rev. 122, 6795 (2022)

    CAS  Google Scholar 

  14. X. Liao, A.B. Braunschweig, Z. Zheng, C.A. Mirkin, Small 6, 1082 (2010)

    CAS  Google Scholar 

  15. C.D. O’Connell, M.J. Higgins, D. Marusic, S.E. Moulton, G.G. Wallace, Langmuir 30, 2712 (2014)

    CAS  Google Scholar 

  16. A. Urtizberea, M. Hirtz, H. Fuchs, Nanofabrication 2, 43 (2016)

    Google Scholar 

  17. P.C. Chen, Y. Liu, J.S. Du, B. Meckes, V.P. Dravid, C.A. Mirkin, J. Am. Chem. Soc. 142, 7350 (2020)

    CAS  Google Scholar 

  18. L. Huang, M. Liu, H. Lin, Y. Xu, J. Wu, V.P. Dravid, C. Wolverton, C.A. Mirkin, Science 365, 1159 (2019)

    CAS  Google Scholar 

  19. L. Huang, H. Lin, C.Y. Zheng, E.J. Kluender, R. Golnabi, B. Shen, C.A. Mirkin, J. Am. Chem. Soc. 142, 4570 (2020)

    CAS  Google Scholar 

  20. B. Shen, L. Huang, J. Shen, X. Hu, P. Zhong, C.Y. Zheng, C. Wolverton, C.A. Mirkin, ACS Nano 17, 4642 (2023)

    CAS  Google Scholar 

  21. B. Shen, L. Huang, J. Shen, L. Meng, E.J. Kluender, C. Wolverton, B. Tian, C.A. Mirkin, J. Am. Chem. Soc. 142, 18324 (2020)

    CAS  Google Scholar 

  22. J.L. Hedrick, K.A. Brown, E.J. Kluender, M.D. Cabezas, P.C. Chen, C.A. Mirkin, ACS Nano 10, 3144 (2016)

    CAS  Google Scholar 

  23. R.E. Schaak, B.C. Steimle, J.L. Fenton, Acc. Chem. Res. 53, 2558 (2020)

    CAS  Google Scholar 

  24. J.H. Swisher, L. Jibril, S.H. Petrosko, C.A. Mirkin, Nat. Rev. Mater. 7, 428 (2022)

    CAS  Google Scholar 

  25. P.C. Chen, G. Liu, Y. Zhou, K.A. Brown, N. Chernyak, J.L. Hedrick, S. He, Z. Xie, Q.Y. Lin, V.P. Dravid, S.A. O’Neill-Slawecki, C.A. Mirkin, J. Am. Chem. Soc. 137, 9167 (2015)

    CAS  Google Scholar 

  26. P.C. Chen, X. Liu, J.L. Hedrick, Z. Xie, S. Wang, Q.Y. Lin, M.C. Hersam, V.P. Dravid, C.A. Mirkin, Science 352, 1565 (2016)

    CAS  Google Scholar 

  27. P.C. Chen, M. Liu, J.S. Du, B. Meckes, S. Wang, H. Lin, V.P. Dravid, C. Wolverton, C.A. Mirkin, Science 363, 959 (2019)

    CAS  Google Scholar 

  28. J.S. Manser, J.A. Christians, P.V. Kamat, Chem. Rev. 116, 12956 (2016)

    CAS  Google Scholar 

  29. J.S. Du, D. Shin, T.K. Stanev, C. Musumeci, Z. Xie, Z. Huang, M. Lai, L. Sun, W. Zhou, N.P. Stern, V.P. Dravid, C.A. Mirkin, Sci. Adv. 6, eabc4959 (2020)

    CAS  Google Scholar 

  30. D. Shin, M. Lai, Y. Shin, J.S. Du, L. Jibril, J.M. Rondinelli, C.A. Mirkin, Adv. Mater. 35, e2205923 (2023)

    Google Scholar 

  31. I. Lignos, S. Stavrakis, G. Nedelcu, L. Protesescu, A.J. deMello, M.V. Kovalenko, Nano Lett. 16, 1869 (2016)

    CAS  Google Scholar 

  32. S. Chen, L. Zhang, L. Yan, X. Xiang, X. Zhao, S. Yang, B. Xu, Adv. Funct. Mater. 29, 1905487 (2019)

    CAS  Google Scholar 

  33. M. Lai, D. Shin, L. Jibril, C.A. Mirkin, J. Am. Chem. Soc. 144, 13823 (2022)

    CAS  Google Scholar 

  34. E.J. Kluender, J.L. Hedrick, K.A. Brown, R. Rao, B. Meckes, J.S. Du, L.M. Moreau, B. Maruyama, C.A. Mirkin, Proc. Natl. Acad. Sci. U.S.A. 116, 40 (2019)

    CAS  Google Scholar 

  35. P.T. Smith, Z. Ye, J. Pietryga, J. Huang, C.B. Wahl, J.K. Hedlund Orbeck, C.A. Mirkin, J. Am. Chem. Soc. 145, 14031 (2023)

    CAS  Google Scholar 

  36. J. Wang, Y. Yoo, C. Gao, I.I. Takeuchi, X. Sun, H. Chang, X. Xiang, P.G. Schultz, Science 279, 1712 (1998)

    CAS  Google Scholar 

  37. J.L. Hitt, Y.C. Li, S. Tao, Z. Yan, Y. Gao, S.J.L. Billinge, T.E. Mallouk, Nat. Commun. 12, 1114 (2021)

    CAS  Google Scholar 

  38. I. Fechete, Y. Wang, J.C. Vedrine, Catal. Today 189, 2 (2012)

    CAS  Google Scholar 

  39. M.F. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Science 339, 535 (2013)

    Google Scholar 

  40. A. Rafiq, M. Ikram, S. Ali, F. Niaz, M. Khan, Q. Khan, M. Maqbool, J. Ind. Eng. Chem. 97, 111 (2021)

    CAS  Google Scholar 

  41. K.J. Bruemmer, S.W.M. Crossley, C.J. Chang, Angew. Chem. Int. Ed. 59, 13734 (2020)

    CAS  Google Scholar 

  42. C. Suh, C. Fare, J.A. Warren, E.O. Pyzer-Knapp, Annu. Rev. Mater. Res. 50, 1 (2020)

    CAS  Google Scholar 

  43. J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Zidek, A. Potapenko, A. Bridgland, C. Meyer, S.A.A. Kohl, A.J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A.W. Senior, K. Kavukcuoglu, P. Kohli, D. Hassabis, Nature 596, 583 (2021)

    CAS  Google Scholar 

Download references

Acknowledgments

Research was sponsored by the Army Research Office and was accomplished under Grant No. W911NF-23-1-0141 and W911NF-23-1-0285. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office or the US Government. The US Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein. This work was also supported by the Sherman Fairchild Foundation, Inc., and the Toyota Research Institute, Inc. P.T.S. gratefully acknowledges support from the Weinberg Family Postdoctoral Fellowship.

Funding

Army Research Office, W911NF-23-1-0141, Chad A. Mirkin, W911NF-23-1-0285, Chad A. Mirkin, Toyota Research Institute, Sherman Fairchild Foundation, Weinberg College of Arts and Sciences, Northwestern University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad A. Mirkin.

Ethics declarations

Conflict of interest

C.A.M. has financial interests in Mattiq, Inc., which could potentially benefit from the outcomes of this research.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, P.T., Wahl, C.B., Orbeck, J.K.H. et al. Megalibraries: Supercharged acceleration of materials discovery. MRS Bulletin 48, 1172–1183 (2023). https://doi.org/10.1557/s43577-023-00619-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-023-00619-z

Keywords

Navigation