Skip to main content
Log in

Materials design for resilience in the biointegration of electronics

  • Review Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Designing biointegrated electronics for resilience starts at the molecular level, whereby “molecular architecture” dictates function. The ability to predict how variations in molecular level features translate to bulk polymer properties is critical for realizing large-scale bulk applications and opening avenues for niche applications. Inspired by architectural resilient design principles, this article reviews analogous principles for materials used in biointegrated electronics, including strategies to address mechanical mismatch, fouling, improper adhesion, and degradation within biological systems. Moreover, innovations in artificial intelligence and automation that will play an important role in elucidating new material design principles and their practical large-scale construction are discussed. Finally, alternative avenues for simplifying the production of future biointegrated electronics are proposed, such as using self-assembly processes that draw inspiration from biology to construct devices in vivo.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

© 2018 American Chemical Society. (d) Illustration of conjugation break spacers (i.e., flexible linkers) being introduced between conjugated units to improve ductility. (e) Chemical structures of alkyl and ionic side chains that can be used to impact solubility and ductility.

Figure 3

© 2020 and 2019 Wiley. (b) Surface chemistry can be manipulated to improve biocompatibility by including antifouling, adhesive, and/or mixed conduction moieties into polymers. Reprinted with permission from Reference 22. © 2020 Proceedings of the National Academy of Sciences; References 23 and 33. © 2020 and 2013 Springer Nature. (c) Devices can be removed in vivo by designing polymers with degradable and/or bioresorbable linkers. Reprinted with permission from References 20 and 48. © 2015 and 2018 Springer Nature. PDMS, poly(dimethylsiloxane); PU, polyurethane.

Figure 4

© 2019 American Chemical Society), (c) Machine learning-based models for polymer repurposing and design (Adapted with permission from Reference 54. © 2020 Royal Society of Chemistry), and (d) automated synthesis and experimental validation of properties. Adapted with permission from Reference 52. © 2020 AAAS.

Similar content being viewed by others

References

  1. D. Trauner, Angew. Chem. Int. Ed. 57, 4177 (2018)

    Article  CAS  Google Scholar 

  2. K. Matyjaszewski, Science 333, 1104 (2011)

    Article  CAS  Google Scholar 

  3. M.M. Haley, J.E. Barker, T.W. Price, L.J. Karas, R. Kishi, S.A. MacMillan, L.N. Zakharov, C. Gomez-Garcia, J. Wu, M. Nakano, Angew. Chemie Int. Ed. (2021). https://doi.org/10.1002/anie.202107855

    Article  Google Scholar 

  4. Y. Zheng, G.J.N. Wang, J. Kang, M. Nikolka, H.C. Wu, H. Tran, S. Zhang, H. Yan, H. Chen, P.Y. Yuen, J. Mun, R.H. Dauskardt, I. McCulloch, J.B.H. Tok, X. Gu, Z. Bao, Adv. Funct. Mater. 29, 1905340 (2019)

    Article  CAS  Google Scholar 

  5. X. Guo, M. Baumgarten, K. Müllen, Prog. Polym. Sci. 38, 1832 (2013)

    Article  CAS  Google Scholar 

  6. Y. Li, W.K. Tatum, J.W. Onorato, Y. Zhang, C.K. Luscombe, Macromolecules 51, 6352 (2018)

    Article  CAS  Google Scholar 

  7. L.A. Galuska, W.W. McNutt, Z. Qian, S. Zhang, D.W. Weller, S. Dhakal, E.R. King, S.E. Morgan, J.D. Azoulay, J. Mei, X. Gu, Macromolecules 53, 6032 (2020)

    Article  CAS  Google Scholar 

  8. B. Roth, S. Savagatrup, N.V. De Los Santos, O. Hagemann, J.E. Carlé, M. Helgesen, F. Livi, E. Bundgaard, R.R. Søndergaard, F.C. Krebs, D.J. Lipomi, Chem. Mater. 28, 2363 (2016)

    Article  CAS  Google Scholar 

  9. J. Mei, Z. Bao, Chem. Mater. 26, 604 (2014)

    Article  CAS  Google Scholar 

  10. W.R. Hollingsworth, C. Segura, J. Balderrama, N. Lopez, P. Schleissner, A.L. Ayzner, J. Phys. Chem. B 120, 7767 (2016)

    Article  CAS  Google Scholar 

  11. Y. Shibuya, H.V.T. Nguyen, J.A. Johnson, ACS Macro Lett. 6, 963 (2017)

    Article  CAS  Google Scholar 

  12. R. Verduzco, X. Li, S.L. Pesek, G.E. Stein, Chem. Soc. Rev. 44, 2405 (2015)

    Article  CAS  Google Scholar 

  13. J.E. Poelma, K. Ono, D. Miyajima, T. Aida, K. Satoh, C.J. Hawker, ACS Nano 6, 10845 (2012)

    Article  CAS  Google Scholar 

  14. M. Zhong, R. Wang, K. Kawamoto, B.D. Olsen, J.A. Johnson, Science 353, 1264 (2016)

    Article  CAS  Google Scholar 

  15. V. Ho, B.W. Boudouris, R.A. Segalman, Macromolecules 43, 7895 (2010)

    Article  CAS  Google Scholar 

  16. J. Maiz, G. Liu, F. Ruipérez, N. Delbosc, O. Coulembier, D. Wang, A.J. Müller, J. Mater. Chem. C 7, 6548 (2019)

    Article  CAS  Google Scholar 

  17. M. Hu, Y. Xia, G.B. McKenna, J.A. Kornfield, R.H. Grubbs, Macromolecules 44, 6935 (2011)

    Article  CAS  Google Scholar 

  18. X. Pang, Y. He, J. Jung, Z. Lin, Science 353, 1268 (2016)

    Article  CAS  Google Scholar 

  19. G. Schiavone, F. Fallegger, X. Kang, B. Barra, N. Vachicouras, E. Roussinova, I. Furfaro, S. Jiguet, I. Seáñez, S. Borgognon, A. Rowald, Q. Li, C. Qin, E. Bézard, J. Bloch, G. Courtine, M. Capogrosso, S.P. Lacour, Adv. Mater. 32, 1906512 (2020)

    Article  CAS  Google Scholar 

  20. S. Zhang, A.M. Bellinger, D.L. Glettig, R. Barman, Y.A.L. Lee, J. Zhu, C. Cleveland, V.A. Montgomery, L. Gu, L.D. Nash, D.J. Maitland, R. Langer, G. Traverso, Nat. Mater. 14, 1065 (2015)

    Article  CAS  Google Scholar 

  21. G. Schiavone, X. Kang, F. Fallegger, J. Gandar, G. Courtine, S.P. Lacour, Neuron 108, 238 (2020)

    Article  CAS  Google Scholar 

  22. J. Liu, X. Zhang, Y. Liu, M. Rodrigo, P.D. Loftus, J. Aparicio-Valenzuela, J. Zheng, T. Pong, K.J. Cyr, M. Babakhanian, J. Hasi, J. Li, Y. Jiang, C.J. Kenney, P.J. Wang, A.M. Lee, Z. Bao, Proc. Natl. Acad. Sci. USA 117, 14769 (2020)

    Article  CAS  Google Scholar 

  23. K. Sim, F. Ershad, Y. Zhang, P. Yang, H. Shim, Z. Rao, Y. Lu, A. Thukral, A. Elgalad, Y. Xi, B. Tian, D.A. Taylor, C. Yu, Nat. Electron. 3, 775 (2020)

    Article  CAS  Google Scholar 

  24. M. Karayilan, L. Clamen, M.L. Becker, Biomacromolecules 22, 223 (2021)

    Article  CAS  Google Scholar 

  25. K. Feron, R. Lim, C. Sherwood, A. Keynes, A. Brichta, P.C. Dastoor, Int. J. Mol. Sci. 19, 2382 (2018)

    Article  CAS  Google Scholar 

  26. C. Horejs, Nat. Rev. Mater. 6, 554 (2021)

    Article  CAS  Google Scholar 

  27. T. Zhou, G. Hong, T.M. Fu, X. Yang, T.G. Schuhmann, R.D. Viveros, C.M. Lieber, Proc. Natl. Acad. Sci. U.S.A. 114, 5894 (2017)

    Article  CAS  Google Scholar 

  28. J. Macron, A.P. Gerratt, S.P. Lacour, Adv. Mater. Technol. 4, 6 (2019)

    Article  CAS  Google Scholar 

  29. X. Wu, H. Peng, Sci. Bull. 64, 634 (2019)

    Article  CAS  Google Scholar 

  30. M. Vatankhah-Varnosfaderani, W.F.M. Daniel, M.H. Everhart, A.A. Pandya, H. Liang, K. Matyjaszewski, A.V. Dobrynin, S.S. Sheiko, Nature 549, 497 (2017)

    Article  CAS  Google Scholar 

  31. H. Yuk, B. Lu, X. Zhao, Chem. Soc. Rev. 48, 1642 (2019)

    Article  CAS  Google Scholar 

  32. J.G. Wu, J.H. Chen, K.T. Liu, S.C. Luo, ACS Appl. Mater. Interfaces 11, 21294 (2019)

    Article  CAS  Google Scholar 

  33. L. Zhang, Z. Cao, T. Bai, L. Carr, J.R. Ella-Menye, C. Irvin, B.D. Ratner, S. Jiang, Nat. Biotechnol. 31, 553 (2013)

    Article  CAS  Google Scholar 

  34. A. Saha, S. Nir, M. Reches, Langmuir 36, 4201 (2020)

    Article  CAS  Google Scholar 

  35. W. Du, D. Ohayon, C. Combe, L. Mottier, I.P. Maria, R.S. Ashraf, H. Fiumelli, S. Inal, I. McCulloch, Chem. Mater. 30, 6164 (2018)

    Article  CAS  Google Scholar 

  36. M. Berggren, E.O. Gabrielsson, D.T. Simon, K. Tybrandt, in Conjugated Polymers J.R. Reynolds, B.C. Thompson, T.A. Skotheim, Eds. (CRC Press, Boca Raton, FL, 2019), pp. 679–696

    Chapter  Google Scholar 

  37. J. Rivnay, S. Inal, B.A. Collins, M. Sessolo, E. Stavrinidou, X. Strakosas, C. Tassone, D.M. Delongchamp, G.G. Malliaras, Nat. Commun. 7, 11287 (2016)

    Article  CAS  Google Scholar 

  38. B.X. Dong, C. Nowak, J.W. Onorato, J. Strzalka, F.A. Escobedo, C.K. Luscombe, P.F. Nealey, S.N. Patel, Chem. Mater. 31, 1418 (2019)

    Article  CAS  Google Scholar 

  39. A. Savva, R. Hallani, C. Cendra, J. Surgailis, T.C. Hidalgo, S. Wustoni, R. Sheelamanthula, X. Chen, M. Kirkus, A. Giovannitti, A. Salleo, I. McCulloch, S. Inal, Adv. Funct. Mater. 30, 1907657 (2020)

    Article  CAS  Google Scholar 

  40. M. Moser, T.C. Hidalgo, J. Surgailis, J. Gladisch, S. Ghosh, R. Sheelamanthula, Q. Thiburce, A. Giovannitti, A. Salleo, N. Gasparini, A. Wadsworth, I. Zozoulenko, M. Berggren, E. Stavrinidou, S. Inal, I. McCulloch, Adv. Mater. 32, 2002748 (2020)

    Article  CAS  Google Scholar 

  41. C. Li, C. Guo, V. Fitzpatrick, A. Ibrahim, M.J. Zwierstra, P. Hanna, A. Lechtig, A. Nazarian, S.J. Lin, D.L. Kaplan, Nat. Rev. Mater. 5, 61 (2020)

    Article  Google Scholar 

  42. A.C. Albertsson, M. Hakkarainen, Science 358, 872 (2017)

    Article  CAS  Google Scholar 

  43. V.R. Feig, H. Tran, Z. Bao, ACS Cent. Sci. 4, 337 (2018)

    CAS  Google Scholar 

  44. A. Uva, A. Lin, J. Babi, H. Tran, J. Chem. Technol. Biotechnol. Early Access (2021)

  45. C.M. Boutry, L. Beker, Y. Kaizawa, C. Vassos, H. Tran, A.C. Hinckley, R. Pfattner, S. Niu, J. Li, J. Claverie, Z. Wang, J. Chang, P.M. Fox, Z. Bao, Nat. Biomed. Eng. 3, 47 (2019)

    Article  CAS  Google Scholar 

  46. P. Shieh, W. Zhang, K.E.L. Husted, S.L. Kristufek, B. Xiong, D.J. Lundberg, J. Lem, D. Veysset, Y. Sun, K.A. Nelson, D.L. Plata, J.A. Johnson, Nature 583, 542 (2020)

    Article  CAS  Google Scholar 

  47. R. Raman, T. Hua, D. Gwynne, J. Collins, S. Tamang, J. Zhou, T. Esfandiary, V. Soares, S. Pajovic, A. Hayward, R. Langer, G. Traverso, Sci. Adv. 6, eaay0065 (2020)

  48. J. Koo, M.R. MacEwan, S.K. Kang, S.M. Won, M. Stephen, P. Gamble, Z. Xie, Y. Yan, Y.Y. Chen, J. Shin, N. Birenbaum, S. Chung, S.B. Kim, J. Khalifeh, D.V. Harburg, K. Bean, M. Paskett, J. Kim, Z.S. Zohny, S.M. Lee, R. Zhang, K. Luo, B. Ji, A. Banks, H.M. Lee, Y. Huang, W.Z. Ray, J.A. Rogers, Nat. Med. 24, 1830 (2018)

    Article  CAS  Google Scholar 

  49. A.J. Gormley, M.A. Webb, Nat. Rev. Mater. 6, 642 (2021)

    Article  CAS  Google Scholar 

  50. S. Hong, C.H. Liow, J.M. Yuk, H.R. Byon, Y. Yang, E.A. Cho, J. Yeom, G. Park, H. Kang, S. Kim, Y. Shim, M. Na, C. Jeong, G. Hwang, H. Kim, H. Kim, S. Eom, S. Cho, H. Jun, Y. Lee, A. Baucour, K. Bang, M. Kim, S. Yun, J. Ryu, Y. Han, A. Jetybayeva, P.P. Choi, J.C. Agar, S.V. Kalinin, P.W. Voorhees, P. Littlewood, H.M. Lee, ACS Nano 15, 3971 (2021)

    Article  CAS  Google Scholar 

  51. B. Burger, P.M. Maffettone, V.V. Gusev, C.M. Aitchison, Y. Bai, X. Wang, X. Li, B.M. Alston, B. Li, R. Clowes, N. Rankin, B. Harris, R.S. Sprick, A.I. Cooper, Nature 583, 237 (2020)

    Article  CAS  Google Scholar 

  52. B.P. MacLeod, F.G.L. Parlane, T.D. Morrissey, F. Häse, L.M. Roch, K.E. Dettelbach, R. Moreira, L.P.E. Yunker, M.B. Rooney, J.R. Deeth, V. Lai, G.J. Ng, H. Situ, R.H. Zhang, M.S. Elliott, T.H. Haley, D.J. Dvorak, A. Aspuru-Guzik, J.E. Hein, and C.P. Berlinguette, Sci. Adv. 6, eaaz8867 (2020)

  53. G. Chen, Z. Shen, A. Iyer, U.F. Ghumman, S. Tang, J. Bi, W. Chen, Y. Li, Polymers 12, 163 (2020)

    Article  CAS  Google Scholar 

  54. Q. Yuan, A. Santana-Bonilla, M.A. Zwijnenburg, K.E. Jelfs, Nanoscale 12, 6744 (2020)

    Article  CAS  Google Scholar 

  55. Y. Liu, D. Zhang, Y. Tang, Y. Zhang, X. Gong, S. Xie, J. Zheng, Chem. Eng. J. 420, 129872 (2021)

  56. S. Wu, Y. Kondo, M. aki Kakimoto, B. Yang, H. Yamada, I. Kuwajima, G. Lambard, K. Hongo, Y. Xu, J. Shiomi, C. Schick, J. Morikawa, R. Yoshida, npj Comput. Mater. 5, 66 (2019)

  57. J. Van Herck, S. Harrisson, R. Hutchinson, G.T. Russell, T. Junkers, Polym. Chem. 12, 3688 (2021)

    Article  Google Scholar 

  58. T.S. Lin, C.W. Coley, H. Mochigase, H.K. Beech, W. Wang, Z. Wang, E. Woods, S.L. Craig, J.A. Johnson, J.A. Kalow, K.F. Jensen, B.D. Olsen, ACS Cent. Sci. 5, 1523 (2019)

    Article  CAS  Google Scholar 

  59. W. Shin, W. Ko, S.H. Jin, T. Earmme, Y.J. Hwang, Chem. Eng. J. 412, 128572 (2021)

    Article  CAS  Google Scholar 

  60. C.P. Breen, A.M.K. Nambiar, T.F. Jamison, K.F. Jensen, Trends Chem. 3, 373 (2021)

    Article  Google Scholar 

  61. M. Rubens, J.H. Vrijsen, J. Laun, T. Junkers, Angew. Chem. Int. Ed. 58, 3183 (2019)

    Article  CAS  Google Scholar 

  62. D.J. Walsh, S. Dutta, C.E. Sing, D. Guironnet, Macromolecules 52, 4847 (2019)

    Article  CAS  Google Scholar 

  63. T. Junkers, Macromol. Chem. Phys. 218, 1600421 (2017)

    Article  CAS  Google Scholar 

  64. M. Trobe, M.D. Burke, Angew. Chem. Int. Ed. 57, 4192 (2018)

    Article  CAS  Google Scholar 

  65. N. Labonnote, A. Rønnquist, B. Manum, P. Rüther, Autom. Constr. 72, 347 (2016)

    Article  Google Scholar 

  66. S.J. Keating, J.C. Leland, L. Cai, N. Oxman, Sci. Robot. 2, eaam8986 (2017)

  67. B.B. Patel, D.J. Walsh, D.H. Kim, J. Kwok, B. Lee, D. Guironnet, Y. Diao, Sci. Adv. 6, eaaz7202 (2020)

  68. R. Xie, S. Mukherjee, A.E. Levi, V.G. Reynolds, H. Wang, M.L. Chabinyc, C.M. Bates, Sci. Adv. 6, eabc6900 (2020)

  69. G. Fan, A.J. Graham, J. Kolli, N.A. Lynd, B.K. Keitz, Nat. Chem. 12, 638 (2020)

    Article  CAS  Google Scholar 

  70. Y. Dai, T. Li, Z. Zhang, Y. Tan, S. Pan, L. Zhang, H. Xu, J. Am. Chem. Soc. 143, 10709 (2021)

    Article  CAS  Google Scholar 

  71. J. Liu, Y.S. Kim, C.E. Richardson, A. Tom, C. Ramakrishnan, F. Birey, T. Katsumata, S. Chen, C. Wang, X. Wang, L.M. Joubert, Y. Jiang, H. Wang, L.E. Fenno, J.B.H. Tok, S.P. Paşca, K. Shen, Z. Bao, K. Deisseroth, Science 367, 1372 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), RGPIN-2021-03554. A.U. thanks the University of Toronto for the Faculty of Arts & Science Top (FAST) Doctoral Fellowship. We also gratefully acknowledge the Department of Chemistry and the Department of Chemical Engineering & Applied Chemistry at the University of Toronto for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Tran.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Angela Lin, Azalea Uva and Jon Babi are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, A., Uva, A., Babi, J. et al. Materials design for resilience in the biointegration of electronics. MRS Bulletin 46, 860–869 (2021). https://doi.org/10.1557/s43577-021-00174-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-021-00174-5

Keywords

Navigation