Skip to main content
Log in

Atomic Layer Chemical Vapor Deposition of Hafnium Oxide Using Anhydrous Hafnium Nitrate Precursor

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

HfO2 films have been deposited using anhydrous hafnium nitrate (Hf(NO3)4) as a precursor for atomic layer chemical vapor deposition (ALCVD). These films have been characterized using x-ray diffraction, x-ray reflectivity, atomic force microscopy, current vs. voltage, and capacitance vs. voltage measurements. An advantage of this precursor is that it produces smooth and uniform initiation of film deposition on H-terminated silicon surfaces. As deposited films remained amorphous at temperatures below ∼700°C. The effective dielectric constant of the film (neglecting quantum effects) for films less than ∼15 nm thick, was in the range of kfilm ∼ 10-11, while the HfO2 layer value was estimated to be kHfO2 ∼ 12-14. The lower than expected dielectric constant of the film stack is due in part to the presence of an interfacial layer such as HfSiOx. Excess oxygen may play a role in the lower than expected dielectric constant of the HfO2 layer. Breakdown of HfO2 films occurred at ∼5-7 MV/cm. Leakage current was lower than that of SiO2 films of comparable equivalent thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.D. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys. 5243, 5243 (2001).

    Article  Google Scholar 

  2. “Front End Processes,” in International Technology Roadmap for Semiconductors, 2001 Edition, http://public.itrs.net/Files/2001ITRS/Home.htm

  3. M.L. Green, E.P. Gusev, R. Degraeve, and E.L. Garfunkel, J. Appl. Phys. 2057, 2057 (2001).

    Article  Google Scholar 

  4. K.J. Hubbard and D.G. Schlom, J. Mater. Res. 2757, 2757 (1996).

    Article  Google Scholar 

  5. J. Robertson, J. Vac. Sci. Tech. B 1785, 1785 (2000).

    Article  Google Scholar 

  6. B.H. Lee, L. Kang, W.J. Qi, R. Nieh, Y. Jeon, K. Onishi, and J.C. Lee, Tech. Digest: Inter. Elec. Dev. Meet., p. 133, (1999), Appl. Phys. 1926, 1926 (2000).

    Google Scholar 

  7. T. Ma, S.A. Campbell, R. Smith, N. Hoilien, H. Boyong, W.L. Gladfelter, C. Hobbs, D. Buchanan, C. Taylor, M. Gribelyuk, M. Tiner, M. Coppel, and J.J. Lee, IEEE Trans. Elec. Dev. 2348, 2348 (2001).

    Google Scholar 

  8. M. Copel, M. Gribelyuk, and E. Gusev, Appl. Phys. Lett. 436, 436 (2000).

    Article  Google Scholar 

  9. C.M. Perkins, B.B. Triplett, P.C. McIntyre, K.C. Saraswat, S. Haukka, and M. Tuominen, Appl. Phys. Lett. 2357, 2357 (2001).

    Article  Google Scholar 

  10. R.C. Smith, T. Ma, N. Hoilien, L.Y. Tsung, M.J. Bevan, L. Colombo, J. Roberts, S.A. Campbell, and W.L. Gladfelter, Adv. Mater. Opt. and Electron. 105, 105 (2000).

    Article  Google Scholar 

  11. D.G. Colombo, D.C. Gilmer, V.G. Young, S.A. Campbell, and W.L. Gladfelter, Chem. Vap. Deposition 220, 220 (1998).

    Article  Google Scholar 

  12. J. Park, B. K. Park, M. Cho, C. S. Hwang, K. Oh, D.Y. Yang, J. Electrochem. Soc. 149(1), G89-G94 (2002).

    Article  CAS  Google Scholar 

  13. W. Zhu, T.P. Ma, T. Tamagawa, Y. Di, J. Kim, R. Carruthers, M. Gibson, and T. Furukawa, IEDM 2001, p. 463.

    Google Scholar 

  14. C. Hobbs, H. Tseng, K. Reid, et al., IEDM 2001 Tech. Digest, p. 651.

    Google Scholar 

  15. Y. Kim et al., IEDM 2001 Tech. Digest, p. 455.

    Google Scholar 

  16. J.F. Conley Jr, Y. Ono, D.J. Tweet, W. Zhuang, W. Gao, M.S. Kaiser, and R. Solanki, Electrochem. Soc. Lett. 5, C57-C59 (2000).

    Article  Google Scholar 

  17. R. Gordan, J. Becker, D. Hausmann, and S. Suh, Chem. of Mat. 13, 2463-4 (2001).

    Article  Google Scholar 

  18. E.P. Gusev, E. Cartier, M. Copel, M. Gribelyuk, D.A. Buchanan, H. Okorn-Schmidt, C. D’Emic, P. Kozlowski M. Tuominen, M. Linnermo, and S. Haukka, in Proc. of the ECS Meeting, Abstract #578 (March 2001).

    Google Scholar 

  19. Y. Ma, Y. Ono, L. Stecker, D.R. Evans, and S.T. Hsu, IEDM Tech. Digest, 149 (1999).

    Google Scholar 

  20. H. Zhang and R. Solanki, J. Electrochem. Soc. 63, 63 (2001).

    Article  Google Scholar 

  21. S. Sayan, E. Garfunkel, and S. Zuzer, Appl. Phys. Lett. 81(12), 2135 (2002).

    Article  Google Scholar 

  22. M. Balog, M. Schieber, M. Michman, and S. Patai, Thin Sol. Films 247, 247 (1977).

    Article  Google Scholar 

  23. T. Suntola, Materials Science Reports 4, 261–312 (1989).

    Article  CAS  Google Scholar 

  24. M. Ritala, M. Leskela, L. Niinisto, T. Prohaska, G. Friedbacher, and M. Grassbauer, Thin Solid Films 1, 1 (1994).

    Google Scholar 

  25. M. Tuominen, T. Kanniainen, and S. Haukka, in Electrochemical Society Proceedings Vol. 2000-9, p. 271-82 (2000).

    Google Scholar 

  26. A. Kang, P.M. Lenahan, J.F. Conley Jr, and R. Solanki, submitted to Appl. Phys. Lett.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conley, J.F., Ono, Y., Tweet, D.J. et al. Atomic Layer Chemical Vapor Deposition of Hafnium Oxide Using Anhydrous Hafnium Nitrate Precursor. MRS Online Proceedings Library 716, 22 (2001). https://doi.org/10.1557/PROC-716-B2.2

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-716-B2.2

Navigation