Skip to main content
Log in

Real Time Observations of Dislocation-Mediated Plasticity in the Epitaxial AI (011)/Si(100) Thin Film System

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Despite numerous theoretical and experimental studies of strain relaxation in metal films on silicon substrates, the exact mechanisms by which dislocations mediate plasticity in these structures are not well understood. To elucidate these mechanisms, we present results fromin-situ transmission electron microscopy annealing of thin aluminum films grown on Si (100). As a model system, we have chosen to focus on aluminum films which contain two (011) epitaxial variants with respect to the silicon substrate. In this paper we discuss our observations of the glide and climb behavior of dislocations in these structures during thermal cycling. These observations give qualitative insight into the mechanisms by which dislocation motion accommodates thermally induced strains in thin metal films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. comprehensive reviews, see W. D. Nix, Met. Trans. A 20, 2217, 1989 and

    Article  Google Scholar 

  2. W.D. Nix, Mat. Sci. Eng. A 234–236, 37, 1997.

    Google Scholar 

  3. The evolution of this field of research is well documented in the Mat. Res. Soc. Proc. series Thin Films: Stresses and Mechanical Properties, vols. 1-7 (Materials Research Society, Pittsburgh, PA, 1988–1997).

  4. M. F. Doerner and S. Brennan, J. Appl. Phys. 63, 126, 1988.

    Article  CAS  Google Scholar 

  5. I.C. Noyan, T.C. Huang and B.R. York, Crit. Rev. Solid State and Mat. Sci., 20, 125, 1995.

    Article  CAS  Google Scholar 

  6. P. A. Flinn, D.S. Gardner and W.D. Nix, IEEE Trans. on Electron Devices, vol. 10, 869, 1987.

    Google Scholar 

  7. J. J. Vlassak and W.D. Nix, J. Mater. Res., 7, 3243, 1992.

    Article  Google Scholar 

  8. T. P. Wiehs, S. Hong, J.C. Bravman and W.D. Nix, J. Mater. Res. 3, 931, 1988

    Article  Google Scholar 

  9. J. Florando, H. Fujimoto, Q. Ma, O. Kraft, R. Schwaiger and W.D. Nix, in Materials Reliability in Microelectronics IX, p. 231 (Materials Research Society, Pittsburgh, PA, 1999.)

    Google Scholar 

  10. J. Pethica, R. Hutchings and W.C. Oliver, Phil. Mag. A 48, 593, 1983.

    Article  CAS  Google Scholar 

  11. N. Thangarj, K.H. Westmacott, and U. Dahmen, Appl. Phys. Lett. 61, 37, 1992.

    Article  Google Scholar 

  12. R. Hull, Appl. Phys. Lett. 63, 1782, 1992.

    Google Scholar 

  13. Ibis Technology Corporation, 32 Cherry Hill Drive, Danvers, MA 01923

  14. E. A. Stach, R. Hull, R.M. Tromp, M.C. Reuter, M. Copel, F.K. LeGoues and J.C. Bean, J. Appl. Phys. 83, 1931, 1998.

    Article  CAS  Google Scholar 

  15. ‘Quicktime’ movies of these experiments can be viewed on the internet at the website: http://ncem.lbl.gov/Al_ bicrystal_anneals

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. Stach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stach, E.A., Dahmen, U. & Nix, W.D. Real Time Observations of Dislocation-Mediated Plasticity in the Epitaxial AI (011)/Si(100) Thin Film System. MRS Online Proceedings Library 619, 27–34 (2000). https://doi.org/10.1557/PROC-619-27

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-619-27

Navigation