Skip to main content
Log in

Amorphous Diamond Films Deposited by Pulsed-Laser Ablation: The Optimum Carbon-Ion Kinetic Energy and Effects of Laser Wavelength

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

A systematic study has been made of changes in the bonding and optical properties of hydrogen-free tetrahedral amorphous carbon (ta-C) films, as a function of the kinetic energy of the incident carbon ions measured under film-deposition conditions. Ion probe measurements of the carbon ion kinetic energies produced by ArF and KrF laser ablation of graphite are compared under identical beam-focusing conditions. Much higher C+ kinetic energies are produced by ArF-laser ablation than by KrF for any given fluence and spot size. Electron energy loss spectroscopy and scanning ellipsometry measurements of the sp3 bonding fraction, plasmon energy, and optical properties reveal a well-defined optimum kinetic energy of 90 eV to deposit ta-C films having the largest sp3 fraction and the widest optical (Tauc) energy gap (equivalent to minimum near-gap optical absorption). Tapping-mode atomic force microscope measurements show that films deposited at near-optimum kinetic energy are extremely smooth, with rms roughness of only ~ 1 Å over distances of several hundred nm, and are relatively free of particulates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Robertson, Prog. Solid State Chem. 21, 199 (1991).

    Article  CAS  Google Scholar 

  2. J. Robertson, Surf. Coat. Technol. 50, 185 (1992).

    Article  CAS  Google Scholar 

  3. D. R. McKenzie et al., J. Non-Crystalline Solids 164–166, 1101 (1993).

    Article  Google Scholar 

  4. For a more complete summary of previous ta-C film deposition see refs. 8, 9, 11, 12, 35.

  5. D. R. McKenzie, D. Muller, and B. A. Pailthorpe, Phys. Rev. Lett. 67, 773 (1991).

    Article  CAS  Google Scholar 

  6. R. Lossy et al., Appl. Phys. Lett. 61, 171 (1992).

    Article  CAS  Google Scholar 

  7. P. J. Fallon et al., Phys. Rev. B 48, 4777 (1993).

    Article  CAS  Google Scholar 

  8. S. Xu et al., J. Appl. Phys. 79, 7234 (1996).

    Article  CAS  Google Scholar 

  9. S. Xu et al., Phil Mag. B 76, 351 (1997).

    Article  CAS  Google Scholar 

  10. W. I. Milne et al., Mat. Res. Soc. Symp. Proc. 471, 231 (1997).

    Article  CAS  Google Scholar 

  11. S. R. P. Silva et al., Thin Solid Films 290–291, 317 (1996).

    Article  Google Scholar 

  12. M. Chhwolla et al., Phys. Rev. B 52, 15812 (1995).

    Article  Google Scholar 

  13. S. Prawer et al., Diamond Relat. Mater. 5, 433 (1996).

    Article  CAS  Google Scholar 

  14. Y. Lifshitz, Diamond Relat. Mater. 5, 388 (1996).

    Article  CAS  Google Scholar 

  15. C. L. Marquardt, R. T. Williams, and D. J. Nagel, Mat. Res. Soc. Symp. Proc. 38, 325 (1985).

    Article  CAS  Google Scholar 

  16. D. L. Pappas et al., J. Appl. Phys. 71, 5675 (1992).

    Article  CAS  Google Scholar 

  17. D. L. Pappas et al., J. Appl. Phys. 72, 3966 (1992).

    Article  CAS  Google Scholar 

  18. F. Xiong, Y. Y. Wang, V. Leppert, and R. P. H. Chang, J. Mater. Res. 8, 2265 (1993).

    Article  CAS  Google Scholar 

  19. F. Xiong, Y. Y. Wang, and R. P. H. Chang, Phys. Rev. B 48, 8016 (1993).

    Article  CAS  Google Scholar 

  20. A. A. Puretzky et al., Mat. Res. Soc. Symp. Proc. 388, 145 (1995).

    Article  CAS  Google Scholar 

  21. A. A. Puretzky et al., Appl. Surf. Sci. 96–98, 859 (1996).

    Article  Google Scholar 

  22. D. B. Geohegan and A. A. Puretzky, Mat. Res. Soc. Symp. Proc. 397, 55 (1996).

    Article  CAS  Google Scholar 

  23. D. H. Lowndes et al., Science 273, 898 (1996).

    Article  CAS  Google Scholar 

  24. K. Yamamoto et al., Jpn. J. Appl. Phys. Lett. 36, L1333 (1997).

    Article  Google Scholar 

  25. T. Sato et al., Jpn. J. Appl. Phys. Lett. 26, L1487 (1987).

    Article  CAS  Google Scholar 

  26. H. Koster and K. Mann, Appl. Surf. Sci. 109–110, 428 (1997).

    Article  Google Scholar 

  27. P. T. Murray and D. Thebert-Peeler, p. 359 in Second Inter. Conf. on Laser Ablation: Mechanisms and Applications II, Amer. Inst. of Physics, New York, 1993.

    Google Scholar 

  28. J. P. Sullivan, T. A. Friedmann, and A. G. Baca, J. Electron. Materials 26, 1021 (1997).

    Article  CAS  Google Scholar 

  29. T. A. Friedmann et al., Appl. Phys. Lett. 71, 3820 (1997).

    Article  CAS  Google Scholar 

  30. M. P. Siegal et al., Mat. Res. Soc. Symp. Proc. 349, 507 (1994).

    Article  CAS  Google Scholar 

  31. J. Robertson, Diamond Relat. Mater. 2, 984 (1993).

    Article  CAS  Google Scholar 

  32. J. Robertson, Phil. Trans. Royal Soc. London, Ser. A 342, 277 (1993).

    Article  CAS  Google Scholar 

  33. V. I. Merkulov et al., submitted to Applied Physics Letters.

  34. D. H. Lowndes et al., submitted to J. of Applied Physics.

  35. D. B. Geohegan, p. 124–127 and p. 147–8 in Pulsed Laser Deposition of Thin Films (ed. by D. B. Chrisey and G. K. Hubler), John Wiley & Sons, New York, 1994.

  36. S. D. Berger and D. R. McKenzie, Phil. Mag. Lett. 57, 285 (1988).

    Article  CAS  Google Scholar 

  37. G. E. Jellison Jr., and F. A. Modine, Appl. Opt. 36, 8184 (1997)

    Article  CAS  Google Scholar 

  38. G. E. Jellison Jr., and F. A. Modine, Appl. Opt. 36, 8190 (1997).

    Article  CAS  Google Scholar 

  39. G. E. Jellison Jr., D. B. Geohegan, D. H. Lowndes, A. A. Puretzky, and V. Merkulov, this symposium proceedings.

  40. G. E. Jellison Jr., and F. A. Modine, Appl. Phys. Lett. 69, 373–373 (1996)

    Google Scholar 

  41. G. E. Jellison Jr., and F. A. Modine, Appl. Phys. Lett. 69, 2137 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowndes, D.H., Merkulov, V.I., Puretzky, A.A. et al. Amorphous Diamond Films Deposited by Pulsed-Laser Ablation: The Optimum Carbon-Ion Kinetic Energy and Effects of Laser Wavelength. MRS Online Proceedings Library 526, 325–330 (1998). https://doi.org/10.1557/PROC-526-325

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-526-325

Navigation