Skip to main content
Log in

A Model for Relaxation in Supercooled Liquids and Polymer Melts

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

A new model for molecular rearrangements in liquids is proposed. The liquids are regarded as dense ensembles of vibrating molecules satisfying the excluded volume condition. A continuity condition is applied on the molecular scale of such systems and is regarded as controlling rearrangements leading to translations of molecules beyond the range of their vibration amplitude. It results in cooperative rearrangements which are considered as taking place in systems with fluctuating density. Rates of rearrangements are considered as being controlled by thermal activation with activation energy barriers dependent on local density. Various dependencies of the activation energy barriers on local density are examined. It is shown, that the model is able to reproduce the extremal cases of temperature dependencies of relaxation times represented on one edge by the Arrhenius relation and on the other edge by the Vogel-Fulcher-Tamman relation. The model can, however, provide a broad spectrum of other dependencies filling the gap between these extremes. All cases are based on the uniform microscopic picture of cooperative molecular rearrangements resulting from system continuity. The model is implemented as a simulation algorithm (Dynamic Lattice Liquid - DLL algorithm) which is used to simulate dynamic properties of liquids and polymer melts. Simulation results obtained for polymers are compared with experimental results obtained by means of the dynamic mechanical measurements on polyisobutylene samples with various molecular weights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Brower, Relaxation in Viscous Liquids and Glasses, The Am. Ceramic Soc., Columbus, OH, 1985

    Google Scholar 

  2. W. Götze in Liquids, Freezing and Glass Transition, eds. J. P. Hansen, D. Levesque and J. Zinn-Justin, North-Holland, Amsterdam 1991

  3. E. Donth, Relaxation and Thermodynamics in Polymers, Akademie Verlag, Berlin 1992

    Google Scholar 

  4. J. A. Barker and D. Henderson, Rev. Mod. Phys.48, 587(1976)

    Article  CAS  Google Scholar 

  5. B.J. Alder and T.E. Wainwright, J. Chem. Phys.31, 459(1969)

    Article  Google Scholar 

  6. A. Widom, Phys. Rev. A 3, 1394(1971)

    Article  Google Scholar 

  7. R. Kubo, Rept. Progr. Phys. 29, 255(1966)

    Article  CAS  Google Scholar 

  8. R. E. London, J. Chem. Phys. 66, 471(1977)

    Article  CAS  Google Scholar 

  9. W. Götze and L. Sjögren, Rep. Prog. Phys. 55, 241(1992)

    Article  Google Scholar 

  10. M.H. Cohen and G.S. Grest, Phys. Rev. B, 20, 1077(1979)

    Article  CAS  Google Scholar 

  11. G. Adam and J.H. Gibbs, J. Chem. Phys. 43, 139(1965)

    Article  CAS  Google Scholar 

  12. P. J. Flory, ‘Principles of Polymer Chemistry’, Cornell Univ. Press, Ithaca 1953

    Google Scholar 

  13. S.F. Edwards and T. Vilgis, in Physics of Disordered Materials, Eds.: D. Adler, H. Frizsche and S.R. Ovshinsky, Plenum, London 1985

  14. T. Pakula, Macromolecules 20, 679(1987)

    Article  CAS  Google Scholar 

  15. S. Glasstone, K.J. Laider and H. Eyring, The Theory of Rate Processes, NcGraw-Hill, New York, 1941

    Google Scholar 

  16. H. Vogel, Phys. Z. 22, 645 (1921); G.S. Fulcher, J. Am. Ceram. Soc. 8, 339 (1953)

    CAS  Google Scholar 

  17. M.L. Wiliams, R.F. Landel and J.D. Ferry, J. Am. Ceram. Soc. 8. 339(1953)

    Google Scholar 

  18. H. Bässler, Phys. Rev. Lett. 58, 767(1987)

    Article  Google Scholar 

  19. J. Souletie and D. Bertrand, J. Phys. France 51. 1627(1991)

    Article  Google Scholar 

  20. C.A. Angel, C. Alba, A. Arzimanoglou, R. Böhmer, J. Fau, Q. Lu, E. Sanchez, H. Senapati and M. Tatsumisaga, in Slow Dynamics in Condensed Matter, ed. K. Kawasaki, M. Tokuyama and T. Kawakatsu, AIP New York 1992

  21. P.B. Macedo and T.A. Litovitz, J. Chem. Phys. 42, 245(1965)

    Article  CAS  Google Scholar 

  22. J. Koppelmann, in Proceedings of the international Congress on Rheology, 4th, ed.E.H. Lee and A.L. Copley, Willey, New York 1965.

  23. B.D. Hughes, Random Walks and Random Environments, Clarendon Press, Oxford, 1995

    Google Scholar 

  24. T.S. Chow, Macromol. Theory Simul. 4, 397(1995)

    Article  CAS  Google Scholar 

  25. F. Stickel, E.W. Fischer and R. Richert, J. Chem. Phys. 102, 6251(1995)

    Article  CAS  Google Scholar 

  26. J. Teichmann, PhD Thesis, Universität Mainz, 1996

  27. T. Pakula and J. Teichmann - in preparation

  28. T.G. Fox and P.J. Flory, J. Appl. Phys. 21, 581(1980)

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge E. W. Fischer, F. J. Stickel and J. Reiter for numerous stimulating discussions.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pakula, T., Teichmann, J. A Model for Relaxation in Supercooled Liquids and Polymer Melts. MRS Online Proceedings Library 455, 211–222 (1996). https://doi.org/10.1557/PROC-455-211

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-455-211

Navigation