Skip to main content
Log in

Nucleotides as Structural Templates for The Self-Assembly of Quantum-Confined Cds Crystallites

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We report here the use of nucleotides as stabilizers in the formation of quantum-confined ('Q-size') CdS, with the size and composition of the nucleotide exerting a significant effect on the resultant CdS structure. In general, CdS formed from equimolar Cd+2 and S2− (6 × 10−4 M) in the presence of a number of nucleotides yields clusters possessing similar absorption spectra but which differ significantly with respect to emissive behavior and overall physical stability. CdS/polynucleotide colloids (DNA, poly[A], poly[C]) exhibit strong trap luminescence and are stable on a timescale of months, but analogous CdS prepared from the mononucleotides ATP and AMP are virtually nonemissive and flocculate within hours, even upon stabilization at lower temperatures (5 to −60°C). In addition to their preparation and spectroscopic properties, the results of TEM, AFM, and computer modeling studies on these CdS/nucleotide colloids are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.L. Steigerwald, and L.E. Brus, Accts. Chem. Res. 23, 183, (1990);(b) A. Henglein, Top. Curr. Chem. 143, 115, (1988); (c) M.L. Steigerwald, and L.E. Brus, Ann. Rev. Mater. Sci. 19, 471, (1989); (d) G.D. Stucky, and J.E. Mac Dougall, Science 247, 669, (1990).

    Article  CAS  Google Scholar 

  2. A. Fotjik, H. Weller, U. Koch, A. Henglein, Ber. Bunsenges. Phys. Chem. 88, 969, (1984);(b) H. Weller, U. Koch, M. Gutierrez, A. Henglein, Ber. Bunsenges. Phys. Chem. 88, 649, (1984). (c) M. Meyer, C. Walberg, C. Kurihara, J.H. Fendler, J. Chem. Soc. Chem. Comm. 90, (1984); (d) Y. Wang, A. Suna, W. Wahler, R. Kasowski, J. Chem. Phys. B7, 7315, (1987).

    Article  Google Scholar 

  3. M.L. Steigerwald, A.P. Alivisatos, J. Gibson, T. Harris, A.R. Kortan, A.J. Muller, A.M. Thayer, T.M. Duncan, D.C. Douglass, L.E. Brus, J. Am. Chem. Soc. 110, 3046, (1988); (b) N. Herron Y. Wang, and H. Eckert, J. Am. Chem. Soc. 112. 1322, (1990); (c) A.R. Kortan, R.L. Hull, R.L. Opila, M.G. Bawendi, M.L. Steigerwald, P.J. Carroll, L.E. Brus, J. Am. Chem. Soc. 112, 1327, (1990). (d) C.H. Fischer, A. Henglein, J. Phys. Chem. 93, 5578, (1989).

    Article  CAS  Google Scholar 

  4. Y. Wang, N. Herron, J. Phys. Chem. 91, 257, (1987).(b) N. Herron, Y. Wang, M. Eddy, G. Stucky, D. Cox, K. Moller, T. Bein, J. Am. Chem. Soc. 111, 530, (1989).

    Article  CAS  Google Scholar 

  5. E. Smotkin, C. Lee, A. Bard, A. Campion, M.A. Fox, T. Mallouk, S. Webber, J. White, Chem. Phys. Lett. 152, 265, (1988).

    Article  CAS  Google Scholar 

  6. C. Dameron, R. Reese, R. Mehra, A. Kortan, P. Carroll, M.L. Steigerwald, L.E. Brus, D.R. Winge, Nature 338, 596, (1989); (b) C. Dameron, D.R. Winge, Inorg. Chem. 29. 1343, (1990).

    Article  CAS  Google Scholar 

  7. L. Spanhel, M. Hasse, H. Weller, A. Henglein, J. Am. Chem. Soc. 109, 5649 (1987).

    Article  CAS  Google Scholar 

  8. Y. Wang, N. Herron, J. Phys. Chem. 92, 4988 (1988).

    Article  CAS  Google Scholar 

  9. J. Ramsden, S.E. Webber, M. Gratzel, J. Phys. Chem. 89, 2740 (1985); (b) N. Chestnoy, T.D. Harris, R. Hull, L.E. Brus, J. Phys. Chem. 90. 3393 (1986); (c) J. Kuczynski, J.K. Thomas, Langmuir 1 158 (1985); (d) J. Kuczynski, J.K. Thomas, J. Phys. Chem. 89, 2720 (1985).

    Article  CAS  Google Scholar 

  10. G.C. Papavassiliou, J. Solid State Chem. 40, 330 (1981); (b) J.J. Ramsden, M. Gratzel, J. Chem Soc. Faraday Trans. I 80 919 (1984).

    Article  CAS  Google Scholar 

  11. P. Lianos, J.K. Thomas, Chem. Phys. Lett., 125, 299 (1986).

    Article  CAS  Google Scholar 

  12. J.K. Barton and S.J. Lippard, in Nucleic Acid-Metal Ion Interactions, Ed. T. Spiro (Wiley and Sons, New York, 1980) pp 67–68.

    Google Scholar 

Download references

Acknowledgement

The authors wish to thank the Donors of the Petroleum Research Fund, administered by the American Chemical Society, for their support of this work. Support by the Texas Christian University Research Foundation (TCU RF) is also gratefully acknowledged. We also thank Kevin Kjoller and Matt Longmire of Digital Instruments for the generous use of the Nanoscope II, and Ernest Couch of the TCU Dept. of Biology for assistance with the TEM measurements.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coffer, J.L., Chandler, R.R. Nucleotides as Structural Templates for The Self-Assembly of Quantum-Confined Cds Crystallites. MRS Online Proceedings Library 206, 527–531 (1990). https://doi.org/10.1557/PROC-206-527

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-206-527

Navigation