Skip to main content
Log in

Reducing Infections Using Nanotechnology

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Ventilator associated pneumonia (VAP) is a serious and costly clinical problem. Specifically, receiving mechanical ventilation for over 24 hours increases the risk of VAP and is associated with high morbidity, mortality and medical costs. Cost effective endotracheal tubes (ETTs) that are resistant to bacterial infection could help prevent this problem. The objective of this study was to determine differences in the growth of Staphylococcus aureus (S. aureus) on nanomodified and unmodified polyvinyl chloride (PVC) ETTs under dynamic airway conditions. PVC ETTs were modified to have nanometer surface features by soaking them in Rhizopus arrhisus, a fungal lipase. Twenty-four hour experiments (supported by computational models) showed that air flow conditions within the ETT influenced both the location and concentration of bacterial growth on the ETTs especially within areas of tube curvature. More importantly, experiments revealed a 1.5 log reduction in the total number of S. aureus on the novel nanomodified ETTs compared to the conventional ETTs after 24 hours of air flow. This dynamic study showed that lipase etching can create nano-rough surface features on PVC ETTs that suppress S. aureus growth and, thus, may provide clinicians with an effective and inexpensive tool to combat VAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.W. Haley “Incidence and nature of endemic and epidemic nosocomial infections”, in Bennett and Brachman’s Hospital Infections, edited by J.V. Bennett, P.S. Brachman and W.R. Jarvis. (Lippincott Williams & Wilkins, Boston, 2007) p.359–374.

    Google Scholar 

  2. R. Gaynes and J.R. Edwards. Overview of nosocomial infections caused by gramnegative bacilli. Clin. Infect. Dis. 41, 848–854 (2005).

    Article  Google Scholar 

  3. R.S Baltimore. The difficulty of diagnosing VAP. Pediatrics 112, 1420–1421(2003).

    Article  Google Scholar 

  4. F.K. Bahrani-Mougeot, B.J. Paster, and S. Coleman. Molecular analysis of oral and respiratory bacterial species associated with ventilator-associated pneumonia. J. Clin. Microbiol. 45, 1588–1593 (2007).

    Article  CAS  Google Scholar 

  5. R. J. Koerner Contribution of endotracheal tubes to the pathogenesis of ventilatorassociated pneumonia. J. Hosp. Infect. 35, 83–89 (1997).

    Article  CAS  Google Scholar 

  6. S. E. Carsons, Fibronectin in Health and Disease. (CRC Press Inc., New York, 1989).

    Google Scholar 

  7. M.C. Machado, D. Cheng, K.M. Tarquinio, and T.J. Webster. Nanotechnology: Pediatric Applications. Pediatr. Res., 67(5), 500–504 (2010).

    Article  Google Scholar 

  8. J. Klein Probing the interactions of proteins and nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 104, 2029–2030 (2007).

    Article  CAS  Google Scholar 

  9. H. Liu, and T.J. Webster. Nanomedicine for implants: A review of studies and necessary experimental tools. Biomaterials 28, 354–369 (2006).

    Article  CAS  Google Scholar 

  10. J.A Lichter, M.T. Thompson, M. Delgadillo, T. Nishikawa, M.F. Rubner, and K. J. Van Vliet. Substrata mechanical stiffness can regulate adhesion of viable bacteria. Biomacromolecules 9(6), 1571–1578 (2008).

    Article  CAS  Google Scholar 

  11. C. Diaz, M.C Cortizo, P.L Schilardi, S.G.G Saravia, and M.A.F.L. Mele. Influence of the nano-micro structure of the surface on bacterial adhesion. Mat. Res. 10(1), 11–14 (2007).

    Article  CAS  Google Scholar 

  12. S.A. Berger, and L. Talbot. Flow in curved pipes. Annu. Rev. Fluid Mech. 15,461–512 (1983).

    Article  Google Scholar 

  13. R. Rusconi, S. Lecuyer, L. Guglielmini, and H.A. Stone. Laminar flow around corners triggers the formation of biofilm streamers. J. R. Soc. Interface 7, 1293–1299 (2010).

    Article  Google Scholar 

  14. M. Hartmann, J. Guttmann, B. Muller., T. Hallmann, and K. Geiger. Reduction of the bacterial load by the silver-coated endotracheal tube (SCET) a laboratory investigation. Technol. Health Care 7, 359–370 (1999).

    Article  CAS  Google Scholar 

  15. J.T. Seil, N.M. Rubien, T.J. Webster, and K.M. Tarquinio. Comparison of quantification methods illustrates reduced Pseudomonas aeruginosa activity on nanorough polyvinyl chloride. J. Biomed. Mater. Res. B, 9B(1):1–7, 2011.

    Article  Google Scholar 

  16. R Dellinger, P Jean and S Cinel. Regional distribution of acoustic-based lung vibration as a function of mechanical ventilation mode. Crit Care. 11, R26 (2007).

    Article  Google Scholar 

  17. Microbiology, An Introduction. (Tortura, Funke, Case, California, 1998).

  18. Dulbecco Davis, Ginsberg Eisen, Bacterial Physiology: Microbiology, 2nd ed., (Harper and Row, Maryland, 1973) p.96–97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Webster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webster, T.J. Reducing Infections Using Nanotechnology. MRS Online Proceedings Library 1621, 25–32 (2014). https://doi.org/10.1557/opl.2014.5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2014.5

Navigation