Skip to main content

Advertisement

Log in

Performance and Reliability of Thick Cu Interconnects for RF and Analog/Mixed Signal Technology

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Wireless communications such as those in cell phones are utilizing increasing chip design complexity. For example analog mixed-signal chips can contain RF capability which requires integrated inductors [1,2]. High performance RF designs are enabled by the use of thick Copper (Cu) and Aluminum (Al) wires (>3um). In particular, the quality factor of the inductor, which is the ratio of magnetic stored energy over average dissipation, is dependent on the metal thickness. High quality factors, can be achieved by using thick Cu inductors. In some applications, the total thickness of Cu in the inductor can be as much as 12 um.

The fabrication of thick Cu layers is in many ways easier than that of thin Cu layers. For example, there are no limitations in terms of lithography or liner and seed layer thickness. However, there are still challenges with fabrication due to stress. Cracking of the dielectric can occur, due to the mismatch in coefficient of thermal expansion between Cu and SiO2, and due to the thick Cu layers in the inductor stack. Both the layout and the processing must be optimized to ensure that cracking does not occur.

This paper will discuss current applications, inductor design, and the reliability challenges and solutions associated with thick Cu interconnects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.C. Edelstein, J.N. Burghartz, IITC Proc., 1998, pp. 18–20

  2. J.P. Gambino, JF. Anderson, E. Cooney, J. He, R. Bolam, B.C. Webb, C. Cabral, T. Shaw, D. Vanslette, IEEE IPFA Proc.,2011.

  3. A. Joseph, P. Gammel, P. Rabbeni, R. Wolf, J. Dunn, “Silicon Solutions for RF Front-End Applications”, IEEE SiRF Proc., 2011, p. 109–112.

  4. P.J. Zampardi, “Will CMOS Amplifiers Ever Kick-GaAs?”, IEEE CICC Proc., 2010, p. 1–4.

  5. A. Joseph, D.L. Harame, B. Jagannathan, D. Coolbaugh, D. Ahlgren, J. Magerlein, S. St. Onge, L. Lanzerotti, N. Feilchenfeld, , J. Dunn, E. Nowak, “Status and Direction of Communication Technologies”–SiGe BiCMOS and RFCMOS”, Proc. IEEE , 2005, p. 1539–1558.

  6. A. Botula, A. Joseph, J. Slinkman, R. Wolf, Z.-X. He, D. Ioannu, L. Wagner, M. Gordon, M. Abou-Khalil, R. Phelps, M. Gautsch, W. Abadeer, D. Harmon, M. Levy, J. Benoit, J. Dunn, “A Thin-film SOI 180nm CMOS RF Switch Technology”, IEEE SiRF Proc., 2009, p. 1–4.

  7. J.S. Dunn, D.C. Ahlgren, D.D. Coolbaugh, N.B. Feilchenfeld, G. Freeman, D.R. Greenberg, R.A. Groves, F.J. Guarín, Y. Hammad, A.J. Joseph, L.D. Lanzerotti, S.A. St. Onge, B.A. Orner, J.-S. Rieh, K.J. Stein, S.H. Voldman, P.-C. Wang, M.J. Zierak, S. Subbanna, D.L. Harame, D.A. Herman Jr., B.S. Meyerson, Bernard S., “Foundation of rf CMOS and SiGe BiCMOS technologies”, IBM J. Res. Dev., vol. 47, pp. 101–137, 2003.

    Article  Google Scholar 

  8. D. Harame, A. Joseph, D. Coolbaugh, G. Freeman, K. Newton, S.M. Parker, R. Groves, M. Ertuk, K. Stein, R. Volant, C. Dickey, J. Dunn, S. Subbanna, H. Zamat, V.S. Marangos, M.M. Doherty, D.A. Herman, B.S. Meyerson, “The emerging role of SiGe BiCMOS technology in wired and wireless communications”, Proc. IEEE Conf. Devices, Circuits, and Systems, 2002, p. D052.

  9. C.H. Chen, C.S. Chang, C.P. Chao, J.F. Kuan, C.L. Chang, S.H. Wang, H.M. Hsu, W.Y. Lien, Y.C. Tsai, H.C. Lin, C.C. Wu, C.F. Huang, S.M. Chen, P.M. Tseng, C.W. Chen, C.C. Ku, T.Y. Lin, C.F. Chang, H.J. Lin, M.R. Tsai, S. Chen, C.F. Chen, M.Y. Wei, Y.J. Wang, J.C.H. Lin, W.M. Chen, C.C. Chang, M.C. King, C.M. Huang, C.T. Lin, J.C. Guo, G.J. Chern, D.D. Tang, J.Y.C. Sun, “A 90 nm CMOS MS/RF based foundry SOC technology comprising superb 185 GHz fT RFMOS and versatile, high-Q passive components for cost/performance optimization “, IEDM Proc., 2003, pp39–42.

  10. A.K. Stamper, A.K. Chinhakindi, D.D. Coolbaugh, K. Downes, E.E. Eshun, M. Ertuk, Z.-X. He, R.A. Groves, P. Lindgren, V. Ramachandran, “Advanced analog metal and passives integration”, Proc. AMC 2004, MRS 2005, pp. 37–43.

    Google Scholar 

  11. J. Gambino, F. Chen, J. He, “Copper interconnect technlogy for 32 nm node and beyond”, IEEE CICC Proc., 2009, p. 141.

  12. D. Harame, A. Joseph, D. Coolbaugh, G. Freeman, K. Newton, S.M. Parker, R. Groves, M. Ertuk, K. Stein, R. Volant, C. Dickey, J. Dunn, S. Subbanna, H. Zamat, V.S. Marangos, M.M. Doherty, D.A. Herman, B.S. Meyerson, “The emerging role of SiGe BiCMOS technology in wired and wireless communications”, Proc. IEEE Conf. Devices, Circuits, and Systems, 2002, p. D052-1 – D052-17.

  13. J.N. Burghartz, B. Rejaei, H. Schelllevis, “Saddle Add-on Metallization for RF-IC Technology”, IEEE Trans. Elec. Dev., 51, 2004, p. 460–466.

    Article  Google Scholar 

  14. R. Kasim, C. Connor, J. Hicks, J. Jopling, C. Litteken, “Reliability for Manufacturing on 45nm Logic Technology with High-k + Metal Gate Transistors and Pb-free Packaging”, IEEE IRPS Proc., 2009, p. 350–354.

  15. J. Gambino, E. Cooney, F. Anderson, J. He, D. Mosher, C. Cabral Jr, T. Shaw, “Stress effects in Cu interconnects for RF technology”, Presented at Spring MRS 2012

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooney, E., Gambino, J.P., Anderson, F. et al. Performance and Reliability of Thick Cu Interconnects for RF and Analog/Mixed Signal Technology. MRS Online Proceedings Library 1559, 808 (2013). https://doi.org/10.1557/opl.2013.694

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2013.694

Navigation