Skip to main content
Log in

Polycaprolactone-Hydroxyapatite Composite Membrane Scaffolds for Bone Tissue Engineering

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Bone tissue engineering typically involves the use of porous, bioresorbable scaffolds to serve as temporary, three-dimensional scaffolds to guide cell attachment, differentiation, proliferation, and subsequent tissue regeneration. In this study we developed a composite membrane scaffold by phase inversion technique by using biodegradable polyester, Polycaprolactone (PCL), with hydroxyapatite (HA) in order to develop novel controlled nanostructured biomaterials for bone tissue engineering applications.After preparation, membrane scaffolds were characterized in order to evaluate its morphological, physico-chemical and mechanical properties and then used for the cell culture.

Our experimental design consists to apply the knowledge of natural bone tissue remodelling in an in vitro membrane biohybrid system. We used human mesenchymal stem cells for culture in the membrane scaffolds inducing the differentiation in osteoblasts and human monocytes to trigger osteoclastogenesis. Osteoclastic resorption of the scaffold material would lead to subsequent induction of osteoblasts and faster bone formation with mesenchymal stem cells. Our results show that osteoblasts and osteoclasts were successfully differentiated in the developed PCL-HA membrane scaffold. This membrane system will lead to insights in the creation of a controllable osteoinductive microenvironment based on the specific properties (e.g. basic composition, surface chemistry, architecture) and on the function (resorption coupled to proliferation and differentiation) of defined cellular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bose, M. Roy and A. Bandyopadhyay, Trends in Biotechnology 30, 11 (2012).

    Article  Google Scholar 

  2. F. Zhao, Y.J. Yin, W.W. Lu, J.C. Leong, W. Zhang, J.Y. Zhang, M.F. Zhang and K.D. Yao, Biomaterials 23, 3227 (2002).

    Article  CAS  Google Scholar 

  3. N.K. Vail, L.D. Swain, W.C. Fox, T.B. Aufdlemorte, G. Lee and J.W. Barlow, Materials for biomedical application, Materials & Design 20, 123 (1999).

    CAS  Google Scholar 

  4. M. Kellomaki, H. Niiranen, K. Puumanen, N. Ashammakhi, T. Waris, and P. Törmälä ;, Biomaterials 21, 2495 (2000)

    Article  CAS  Google Scholar 

  5. M.A. Woodruff, D.W. Hutmacher, Progress in Polymer Science 35, 1217 (2010).

    Article  CAS  Google Scholar 

  6. S.H. Oh, I.K. Park, J.M. Kim, JH. Lee, Biomaterials 28, 1664 (2007).

    Article  CAS  Google Scholar 

  7. V. Guarino, F. Causa, P. Taddei, M. di Foggia, G. Ciapetti, D. Martini et al., Biomaterials 29, 3662 (2008).

    Article  CAS  Google Scholar 

  8. CXF Lam, S.H. Teoh, D.W. Hutmacher, Polym Int. 56, 718 (2007).

    Article  CAS  Google Scholar 

  9. CXF Lam, D.W. Hutmacher, J-T. Schantz, M.A. Woodruff, SH. Teoh, J Biomed Mater Res Part A 90, 906 (2008).

    Google Scholar 

  10. CXF Lam, M.M. Savalani, S.H. Teoh, D. Hutmacher, Biomed Mater; 3:1 (2008).

    Article  Google Scholar 

  11. A.A. Sawyer, S.J. Song, E. Susanto, P. Chuan, CXF Lam, M.A. Woodruff et al., Biomaterials 30, 2479 (2009).

    Article  CAS  Google Scholar 

  12. D.W. Hutmacher, Biomaterials 21, 2529 (2000).

    Article  CAS  Google Scholar 

  13. S.A. Abbah, CFX Lam, D.W. Hutmacher, J.C.H. Goh, H-K Wong, Biomaterials 30, 5086 (2009).

    Article  CAS  Google Scholar 

  14. I. Sopyana, M. Melb, S. Rameshc, K.A. Khalidd . Science and Technology of Advanced Materials 8, 116 (2007).

    Article  Google Scholar 

  15. R. Ravichandran, J. R. Venugopal, S. Sundarrajan, S. Mukherjee and S. Ramakrishna Biomaterials 33, 846 (2012).

    Article  CAS  Google Scholar 

  16. M.F. Pittenger, A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas, J.D. Mosca, M.A. Moorman, D.W. Simonetti, S. Craig, D.R. Marshak . Science 284, 143 (1999).

    Article  CAS  Google Scholar 

  17. Z. Gamie, G.T. Tran, G. Vyzas, N. Korres, M. Heliots., A. Mantalaris., E. Tsiridis . Expert Opin Biol Ther. 12, 713 (2012).

    Article  CAS  Google Scholar 

  18. R.T. Franceschi . Crit Rev Oral Biol Med 10, 40 (1999).

    Article  CAS  Google Scholar 

  19. J. Chen, K. Singh, B.B. Mukherjee, J. Sodek . Matrix 13, 113 (1993).

    Article  CAS  Google Scholar 

  20. M. Amoui, S.M. Suhr, J.D. Baylink and K.H. William . Am J Physiol Cell Physiol 287, C874 (2004).

    Article  CAS  Google Scholar 

  21. C. Minkin . Calcif. Tissue Int. 34, 285–290 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morelli, S., Facciolo, D., Messina, A. et al. Polycaprolactone-Hydroxyapatite Composite Membrane Scaffolds for Bone Tissue Engineering. MRS Online Proceedings Library 1502, 1215021006 (2012). https://doi.org/10.1557/opl.2013.567

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2013.567

Navigation